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Does Mass Action Law Breakdown Occur in Small Thermodynamic 
Systems ? 

Artjom V. Sokirko* 
A. N. Frumkin Institute of Electrochemistry, Russian Academy of Sciences, 117071 Moscow, Russia 

The problem of applicability of the mass action law to very small thermodynamic systems originally studied by 
L. A. Blumenfeld, A. Yu. Grosberg and A. N .  Tikhonov, J. Chem. Phys., 1991, 95, 7541 is critically analysed. A 
more general statistical mechanics model and a simple kinetic model, which yields results that include those of 
Blumenfeld eta l .  a s  a special case, are proposed. It is shown that in order to obtain, in practice, the mass action 
law breakdown predicted by Blumenfeld eta l . ,  it is necessary either to consider a non-equilibrium thermodyna- 
mic system or to include a non-thermodynamic mechanism, e .g. Maxwell's demon. Conditions for which a 
statistical function can describe the behaviour of a small thermodynamic system in an adequate way are dis- 
cussed. 

Biological cells and organelles are usually large enough for 
the use of thermodynamic approximations instead of an exact 
quantum mechanical approach. For example, the smallest 
studied biological objects that can function independently 
contain at least lo6-10' molecules of water. It is quite clear 
that for such a system, a statistical approach is correct and 
description by thermodynamics gives results with an accu- 
racy of 0.1-0.01 %

On the other hand, a real biological system normally con- 
sists of a large number of similar objects. This means that, 
even if processes in each system are characterised by discrete 
probabilities, the average values for the whole system are 
approximately continuous. For example, during 1 s a recep- 
tor can accept zero or one quantum. The average number of 
quanta per receptor is a real value between zero and one. 
According to the ergodic hypotheses the same results can be 
obtained after averaging the behaviour of a single system 
over a sufficiently long time. 

A statistical mechanics approach based on the concept of 
the partition function can be written formally for any system' 
with an arbitrary number of particles. Calculation of all func- 
tions, for example, of an average number of particles in a 
system with chemical equilibrium and equilibrium Helmholtz 
energy, then takes a formal and definite character. 

The above reasons give an explanation of why the ther- 
modynamic approach is always used for the description of 
biological systems. For example, if we obtain from calcu- 
lations that the equilibrium Helmholtz energy of a substance 
in the compartment is higher than in the external media, it 
means that there is a transfer of substance outwards, depend- 
ing mainly on the permeability of the walls.2 However, sig- 
nificant derivations from classical statistical mechanics have 
been observed, such as a breakdown of the mass action law.3 

On the one hand, the partition function appears in the 
thermodynamic analysis of small systems and is normally 
simple and compact. On the other hand, a simple operation 
of averaging, which is very clear for large systems, becomes 
sometimes dangerous and complicated while still simple 
mathematically. The main question is: 'Is the time period of 
observation (or the number of objects) large enough so that 
average values of statistical functions show correctly the 
qualitative behaviour of the system?' Otherwise, if during the 
period of time given only a few elementary events are possible 
in the system, it is necessary to analyse each event separately 
to get an adequate description of the system. 

*Present address: Department of Chemistry, Trent University, 
Peterborough, Ontario, Canada, K9J 7B8. 

In the present paper we are going to analyse in detail the 
behaviour of the small system previously described in ref. 3. 

Thermodynamic Approach to the Small Closed System 

Let us consider a closed volume V separated from the exter- 
nal media by a neutral membrane with a very low per- 
meability. It could be a biological vesicle, for example, a 
thylakoid. We are going to study the recombination- 
dissociation reaction of water 

2 H 2 0  q H 3 0 +  + OH-  (1) 

inside the volume V. The water product (the product of con- 
centrations of H,O' and OH-  ions) in the bulk solutions, 
K, z 10-l4 mo12 dm-6. For a neutral solution it gives the 
concentration of H 3 0 +  or OH-  ions as mol dm-3, 
which means that only one water molecule in lo7 is disso- 
ciated. If the total number of water molecules, N, inside the 
volume V is less than lo7 then less than one pair of H30', 
OH-  exists inside V. Actually, this means that sometimes 
there are no ions, or just one pair and seldom are there two 
or more pairs. Electric interactions between ions can be 
neglected and we can thus consider a system consisting of a 
mixture of three ideal gases. The partition function Z is 
expressed simply as 

Here n,, n - ,  n+ are the number of non-dissociated water 
molecules, hydroxy group ions and hydrogen ions, respec- 
tively; Vo is the so-called 'quantum volume'. The last term in 
right part of eqn. (II) is the Boltzmann factor 

where AE, is the energy difference between dissociated and 
non-dissociated states of a molecule. As the energy of disso- 
ciation for a single molecule is independent of volume, the 
actual value for K is simply K = K,ci2, where c, is the 
water concentration, i.e. K is a non-dimensional water 
product. The power of K is n,/2, rather than no because dis- 
sociation of one molecule decreases the number of water mol- 
ecules by two. Finally, the sum in eqn. (I) must be taken over 
all possible combinations of n - , n + , no. 

Following ref. 3, in this part we consider a closed volume 
V, where transfer of ions with the surrounding media is not 
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possible. From the stoichiometry of reaction (1) the total 
number of particles in the system N = n- + n+ + no is con- 
stant. Moreover, hydroxy group ions and hydrogen ions 
appear and disappear in system only in pairs and the differ- 
ence between their numbers q = n +  - n must be constant. 
The value of q also corresponds to the electric charge of the 
volume given in elementary charge units. Therefore, only one 
variable in n- , n+ , no is really independent. We can use any 
one of them or any convenient combination, for example, 
rn = min(n- , n+), as an independent variable. The variable m 
denotes the number of dissociated water molecules. While rn 
can only be a non-negative integer, q can be a positive or 
negative integer or zero depending on the number of H,O+ 
and O H -  ions present and N is a positive integer. The 
inverse transfer can be presented as: 

Substituting eqn. (IV) into eqn. (III) gives 

We omit the other arguments of z ,  which are, in fact, con- 
stant. The summation in eqn. (I) is now simply over m start- 
ing from m = 0. As was pointed out in ref. 3, at K << 1 and 
N b 1 the upper limit of eqn. (I) plays no role. Therefore, the 
average number of hydrogen ions can be calculated as: 

With the Stirling formula for no % 1, we can simpllify eqn. 
(VI) as 

Eqn. (VII) is valid for ( n - )  with the cyclic replacement of 
subscripts + and -. 

As shown in ref. 3, according to eqn. (VII), the mass action 
law (n+) (n_)  = K N 2  is valid approximately in the case of 
large values of n , ,  n- (i.e. n,,  n-  b 1). For example, in the 
simplest case of q = 0, and at  typical values of n+  < 1, the 
average value (n,) = KN2, while according to mass action 
law it must be (n,) = J(K)N. We obtained this result under 
the assumption that water dissociation corresponds to reac- 
tion (I), while in ref. 3 a reaction of the form H 2 0  i=i H +  
+ O H-  was assumed. Therefore, we have confirmed that for 

an absolutely closed small thermodynamic system significant 
deviations from the mass action law are possible. The actual 
stoichiometry of reaction plays no significant role. 

The next, at first glance credible, idea of ref. 3 is that as 
long as average concentrations inside V and the bulk solu- 
tion are different, a gradient of Helmholtz energy across the 
membrane appears. Blumenfeld et al. supposed that the fol- 
lowing expression is valid for the Helmholtz energy 

where n+,,,, is the maximum possible value of n+  . However, 
while eqn. (VII) has been derived, no interference of the inner 
volume and surrounding part was assumed. In other words, it 
was supposed that there is no possibility for the N or q values 
of the system to change; such processes are prohibited and 
systems with different N and/or q are incomparable. From a 
formal mathematical point of view this is reflected by the fact 

that at constant N and q, Z does not depend on n-  , n+ , no, 
therefore the notation (n+ - 1) when only one argument is 
being changed (and the rest of them are being kept constant) 
is incorrect. 

The background of this problem can be more easily under- 
stood by analogy with electrostatics. Suppose that we have 
an absolutely isolated volume V with a distribution of electri- 
cal charge inside (total charge equal to zero). Note that com- 
plete isolation includes the absence of the hypothetical 
transfer of charge across the boundary. We can somehow 
define the electrical potential inside, calculate electrical field 
etc. However, we cannot find the electric potential difference 
between these two regions of space, because we have to move 
at least one elementary charge across the boundary. As long 
as this is impossible, the potentials in the two regions of 
space are incomparable. Only in the special case when the 
volume V consists of a significant number of charged par- 
ticles and the removal (or addition) of one of them does not 
change the general picture, is it possible to define the poten- 
tial difference across an 'absolutely isolated' surface. 

In the next section we will modify the system, considering 
in addition to the dissociation-recombination reaction a 
hypothetical possibility of proton transfer through a mem- 
brane. 

Thermodynamic Approach to a 'Semi-open' Small 
System 

Let us suppose that in addition to the processes of 
dissociation-recombination [reaction (I)] there is a possible 
proton transfer through the membrane. We will call this 
system 'semi-open', because it is still closed for O H-  ions 
and water molecules. Analogously to  the previous case, the 
total number of particles N is constant, because a transferring 
proton joins/separates one of the water molecules. However, 
the value q can now vary. 

Eqn. (II) for a component of the partition function Z 
becomes 

Here R corresponds to an energy difference between two 
states of system which differ by just one hydrogen ion. The 
power at R consists of the actual number of hydronium ions 
and the potential number of H,O+,  hidden in the water mol- 
ecules [according to reaction (1) only half of all water mol- 
ecules can be transformed into H,O+,  the rest must become 
OH- ].  Actually, R is the right-hand part of eqn. (VIII). 

Provided that q is no longer invariant, it is more conve- 
nient to use as independent variables n- , n+ rather than m, q. 
The summation in eqn. (I) for the partition function must 
now be done for both variables n _  , n + ,  starting from zero 
values. 

The expression for the average value of ( n + )  is similar to 
eqn. (VI) with the substitution of n _  , n +  for m. Similarly, the 
upper limits of the summation play no role and the Stirling 
formula for no b 1 can be applied. However, unlike the pre- 
vious case, it is possible to find a finite expression for both 
sums, in denominator and numerator, and finally obtain the 
exact result : 

which is valid for all values of K and R including the case of 
(n + ) < 1. Analogously, the average number of hydroxy 
group ions is (n-)  = J(K,'R)N and the mass action law is 
obviously valid. 



J. CHEM. SOC. FARADAY TRANS., 1994, VOL. 90 

Therefore, we have to admit that the phenomenon of 'mass 
action law breakdown' has an unstable nature and disap- 
pears when interference with internal media takes place. In 
order to illustrate this property of system more clearly, we 
will present, in the next section, an alternative method of 
describing the system, applying a kinetic approach to the 
stationary-state system. 

Kinetic Approach to a 'Semi-open' Small System 

The main purpose of this section is to construct the simplest 
kinetic model, because we are interested in the general 
properties of small systems. 

Let us assume that the volume V is so small that all water 
molecules keep a certain order and a quasicrystal structure 
exists evervwhere. If we choose the size of water molecules r 
as the length scale, we have an approximate relation 
V -, Nr3. 

Inside the volume V four different events are possible: (1) 
dissociation of water molecules; (2) recombination of an 
existing pair of OH-  and H 3 0 +  ions; (3) entry of a proton 
(possible only when a hydrogen ion is situated on the exter- 
nal boundary of the vesicle); (4) exit of a proton (possible 
only when the hydrogen ion is situated near the inner 
boundary). 

There is no specific restriction on the choice of the time- 
scale. For example, it may correspond to the average period 
under which a proton joins a certain water molecule. This 
time is about the characteristic time T of recombination of 
OH-  and H,O+ ions, r = l/k,c, z s, where k, is the 
rate constant of rec~mbination.~ The characteristic period for 
water dissociation is 0.1 s and for ion transport through a 
membrane is 1 s, so the period r is small enough to assume 
that at most one of events (1)-(4) can take place during each 
period T. 

Let us find the probabilities of occurrence of different 
events during the time period r. Let the probability of disso- 
ciation of a single water molecule during 1 s be simply k,, 
which gives for the volume of N molecules for the period τ 

the probability b :  

b = Nk, ~ ( l  - k, T ) ~ -  ' -, Nk, r (XI)

Eqn. (XI) is valid as long as Nk,r 1, which can always be 
fulfilled by an appropriate choice of r ;  in our case Nk,r z 

Owing to the fact that the H 3 0 +  ions are mainly 
reflected from walls, the ions move inside chaotically. For the 
occurrence of recombination at a certain point, ions H,O+ 
and OH-  must meet each other there, and the probability f 
for recombination in the whole vesicle is 

The probability g of ion transfer through the membrane from 
the solution into the vesicle is proportional to its concentra- 
tion cBol and the area of a membrane S

g = DcBol S (XIII) 

here D is the proportionality coefficient depending on the 
structure of the membrane, its thickness etc. Along similar 
lines we can write the probability of exit of an ion outside 

Fig. 1 Grid (m, q) of possible system states 

b may different from D for several reasonst In some sense 
coefficients b and D may be interpreted as the renormalized 
diffusion coefficients. 

Note that the probabilities of the direct processes, disso- 
ciation and entry, do not depend on the state of the system 
(i.e. number of ions), while probabilities of the reverse pro- 
cesses, recombination and exit, increase with increasing 
numbers of ions. This creates the possibility of dynamic equi- 
librium in our kinetic system. 

The factors in eqn. (XII) and (XIV) for f and h that do not 
depend on number of ions arefand h 

Let us describe the state of the system at a certain moment by 
the pair of numbers m and q. Let a, be the probability of 
finding a system in the state (m, q). All values a, satisfy the 
normalising condition : 

The probability of transfer in each period r from the state (m, 
q) to the state (i, j) will be described by the component of the 
tensor P&.  As long as only one event can occur at one 
period of time, the behaviour of the system can be described 
as a stochastic transformation between states with different m 
and q, i.e. by the Markov process. In other words the system 
(point) keeps freely walking on the grid m, q. Part of that grid 
is shown in Fig. 1. 

Displacement of a point on one position 'downward' cor- 
responds to the event of dissociation, which always takes 
place with probability b, eqn. (XI). The opposite displacement 
(upward) corresponds to recombination, probability f. In Fig. 
1 they are presented as multiplied by some integer factor, 
corresponding to n+ , n- . Analogously, a movement towards 
the right (for q 2 0) corresponds to an entry of a proton 
(constant probability g), while movement towards the left 
corresponds to a proton exit (probability h with integer 
factor, equal to n+). One can note that the scheme is not 
symmetrical with respect to positive and negative values of q 
(horizontal arrows become sloped ones at q < 0) For 
example, there is no 'direct' path from the state without ions 
(0, 0) to the state with one anion (0, -1), because anions 
cannot move across the membrane. The shortest trajectory of 

t There are several reasons why the probability for a proton to 
cross a membrane in the inward and outward directions can be dif- 
ferent. The simplest one is that the internal part of the membrane 
bears a fixed positive charge density, which electrostatically prevents 
'outer' ions moving near the membrane, while 'inner' ions are not 
influenced. Another reason can be any non-symmetry of the mem- 
brane (protein absorption), spontaneous curvature or even an active 
ion transport. However, all of these factors are beyond the simple 
consideration of the present paper. 
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such a transformation is dissociation of one molecule, fol- 
lowed by a proton exit. 

Substitution of eqn. (IV) and (XV) into the expressions for 
process probabilities eqn. (XI)-(XIV), gives us a set of expres- 

The probability of staying in the same state is defined by 

All other values of PL,  except those given above are zero. 
We must stress that the scheme in Fig. 1 only serves as an 
illustration to  eqn. (XI) and we present only the most impor- 
tant part. The scheme should be extended to the value of N 
(very long) in the left, right and downward directions but not 
upwards. 

The kinetic model, eqn. (XI)-(XVII), has a general nature 
and allows us to  study the system behaviour in terms of 
Markov chains. For example, one can find how V evolves 
when there are no ions at the beginning. However, as we are 
interested only in average values for a long period, we can 
simplify the solution procedure significantly applying the sta- 
tionary conditions for each couple of values (m, q): 

This expression has a very simple meaning: the left-hand side 
is the probability of entering the state (m, q) from all other 
states; (1 - Pz) is the probability of leaving this state and 
the whole righi-hand side is the mathematical expectation of 
leaving. While the system is in the steady state, these two 
numbers must be equal. 

Eqn. (XVIII) for all (m, q) together with normalising condi- 
tions [eqn. (XVI)] gives a n  N2 equation for determination of 
the number of aij. Nevertheless this system of equations can 
easily be solved with any required accuracy. The reason for 
this is that the most probable state of the system is (0, 0). The 
statistical weight of all other states decreases exponentially 
with the distance from (0,0)

The solution procedure can be defined as follows: (1) selec- 
ting a part of the scheme from Fig. 1 and excluding the rest; 
(2) solving the system of linear equations; (3) choosing a 
larger part of the scheme that includes the previous one; (4) 
solving it;  (5) stopping the procedure at  the required con- 
vergence. 

At first we choose the part consisting of six cells inside the 
dashed line and then extend the area to the part shown in 
Fig. 1. Even such a small set of states gives perfect con- 
vergence. Thus, it is sufficient to  present a solution for a six- 
state system only. 

Eqn. (XVIII) can be written as follows: 

We have listed five equations and excluded the sixth one, 
corresponding to the state (0, 1), as it is a linear combination 
of the five. The normalisation condition, eqn. (XVI), becomes 

a o o + a o l  + a l 0 + a , ,  + a o - ,  + a l - ,  = 1 (XX) 

The system of six linear equations [eqn. (XIX) and (XX)] 
can now be solved for the unknown variables aij. The mathe- 
matical expectations of the number of O H -  and H,O' ions 
inside the volume are 

Results of  Kinetic Approach Solution 

By assigning some reasonable values for the parameters we 
can estimate the properties of the system. We are most inter- 
ested in the concentration of ions inside when its average 
value (mathematical expectation) is small. In order to find 
this we have solved eqn. (XIX) and (XX) for different N and 
calculated M + / N  and M-IN.  

Although our model includes several parameters, we have 
found that the mean concentration of cations inside (M +IN) 
is governed only by the ratio of transfer coefficients DID 

(XXII) 

Actually, eqn. (XXII) is trivial, because it states that the 
average flux of ions outside is equal to the incoming flux. The 
concentration of anions (M-IN)  was found to be inversely 
proportional to  the factor DID, which means that the pro- 
ducts of cation and anion concentrations outside and inside 
are the same. The calculations for a larger system with the 
higher number of possible states (Fig. 1) proved that eqn. 
(XXII) is not an artefact of an over-simplified computation 
scheme. Therefore the kinetic approach agrees with the ther- 
modynamic ones for a 'semi-closed' system, if we put param- 
eter R = into eqn. (IX). 

However, the relation (XXII) is obviously invalid when 
D = b = 0 exactly. In this case eqn. (XIX) becomes 

Zoo = h a 1 0  

Two other equations are the consequence of these. This 
means that the system of four equations, eqn. (XIII) and 
(XVI), for six variables a,,, requires two additional relations. 
Actually, putting D = D = 0 separates the columns in Fig. 1. 
While the only process still taking place is dissociation- 
recombination of water molecules, the charge number 
becomes permanent for each vesicle. The steady state in this 
system is not unique, and will depend on the initial charge 
state of the system. In terms of stochastic process, it means 
that the Markov chain describing the evolution is irreducible. 
Two additional relations are needed for describing the initial 
distributions of vesicles with the charge numbers - 1, 0 and 
1. Of course, here we have some choice. For example, let us 
say that all vesicles have a zero charge. In this case a,, = 
a , ,  = a o - ,  = a , - ,  = O a n d  

The mean concentration (M+/N) - K N  (of N < JK) and 
depends on N significantly. We have arrived at  the results of 
Blumenfeld et al. described in the previous section. 

One can suggest that eqn. (XXIV) can be obtained as a 
limiting case of general solution at  D -+ 0, b -+ 0. Obviously, 
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this procedure has a meaning only when the results are inde- 
pendent of the ratio D l b  when both quantities tend to zero. 
However, eqn. (XXII) shows that the concentration is pro- 
portional to the parameter D l b  even if both quantities are 
infinitely small. Therefore, the limiting transfer D -+ 0, 6 -+ 0 
is meaningless in our system. 

Discussion 

In the previous section we have shown that, although the 
phenomenon of significant deviation from the mass action 
law is theoretically possible, it has a very unstable nature; if 
there is any interaction with the surrounding media the mass 
action law becomes perfectly valid. Now we are going to 
discuss possible variants of the system where the theoretically 
found3 phenomena can be observed in practice. We restrict 
ourselves to  the dissociation-recombination of water. 

The considered volume of water must be absolutely closed. 
Technically it can be achieved by putting the micro-drop of 
water inside a significant volume of non-polar solvent (for 
example, oil) o r  inside a micro-cavity in glass or, perhaps, 
metal. The main difficulty of this method is to find such 
media, which remain totally indifferent with respect to water. 
Also, an additional problem of phase boundary tension can 
arise, because, in such small drops, a significant part of water 
molecule is actually placed near the surface. Although there 
are n o  principal objections to  experimental observations of 
such phenomena in artificial systems, the main goal of ref. 3 is 
to apply results to  real biological systems. 

In cell biology one of the few possible candidates for obser- 
vation is a thylakoid, a small vesicle. This system can be con- 
sidered as a 'closed' one for a period equal to the 
characteristic period of proton exit/entry events. For the 
membranes least permeable to protons this time can be as 
high as a fraction of a second, a very high value for such 
'approximately microscopic' objects. After that a vesicle must 
be considered as a 'semi-closed' one, because the assumption 
q = constant can be broken. 

At the same time we have to realise that the mass action 
law is a statistical law and valid only for equilibrium systems, 
when a number of events of dissociation/recombination is 
large. The constant of water dissociation at  room tem- 
perature is4 kd = 2 x s - l .  For  a vesicle with N = lo6 
water molecules this corresponds to  a frequency of disso- 
ciation of about k d N  z 20 s- ' .  This means that the term 
'average concentration' for one vesicle of such a kind has no 
meaning for a period of time of less than half of a second 
[when a significant number (10) of dissociation and recombi- 
nation events took place; 10 + 11. 

One may suggest that better results can be achieved with 
bigger vesicles, because the frequency of dissociation is pro- 
portional to  their size. However, as it was found in ref. 3, the 
effect under study is significant only when the mean number 
of ions is less than one. For  a vesicle with N = lo7 the effect 
practically vanishes. Movement in the opposite direction, 
decreasing N from a value of one million, also does not help. 
The probability of dissociation is proportional to N ,  while 
the probability of exit/entry is proportional to S i.e. is pro- 
portional to  N2I3, which means that exit/entry becomes more 
and more probable (comparing to dissociation) with decreas- 
ing N .  

Therefore, we have to admit that it is hardly possible to 
measure the deviations from mass action law, monitoring one 
chosen vesicle. However, we can apply the statistical relations 
not to  one object but to  the set of equivalent objects, in our 
case to  a set of L similar vesicles. The vesicles can be called 
'similar' when they have the same N and q. As shown above, 
fluctuations of N are much lower than N and have no influ- 

ence on the result. On  the contrary, both the value and varia- 
tion of q are of the order of 1. This means that there is no 
way to produce and maintain a large set of identical vesicles 
with the same q ;  it is only possible to  produce a set of vesicles 
with different q. In order to choose a subset with a certain 
value of q we have to use some external device which counts 
the ions inside each vesicle and selects some with the right 
value of q. Such a device is called 'the Maxwell's demon' and 
cannot be created in reality. For completeness we can say 
that it is possible to construct such a device as a kind of 
assumption. One can recall the fact that mobility in the exter- 
nal electric field is proportional to the q number and use elec- 
trophoresis for separation of vesicles with different q. Of 
course, such a trick is beyond the scope of equilbrium ther- 
modynamics and is very questionable in the sense of experi- 
mental realisation, but this is the only way of choosing 
identical vesicles we can imagine. 

At present, we d o  not know a single example of a real 
system where theoretical results of ref. 3 can be applied. The 
example discussed in ref. 3 must be rejected as an unsatis- 
factory one. They described the experiment where L vesicles 
spend a long time in the equilibrium with the external solu- 
tion and there is no preliminary selection done. Concentra- 
tions inside and outside are equal and the number of vesicles 
containing a proton, L,, , can be estimated by the equilibrium 
equations for a small N 

Note, that the number of such vesicles L for non-equilibrium 
situation is significantly different: 

The claim of ref. 3 that these vesicles can be considered as 
closed ones, because the observation time is much shorter 
than the characteristic time of exit/entry events, has no 
meaning; the vesicles reach the equilibrium with surrounding 
media (become 'open') before the moment of observation. 

Conclusion 

The present paper was mainly devoted to the discussion of 
the mass action law breakdown initially claimed in ref. 2 and 
3. Our results confirm the theoretical possibility of such 
phenomena, but show that additional strong limitations are 
required in order to fulfil the necessary conditions of even 
formal breakdown of the law. We think that the mass action 
law is valid with an excellent accuracy for all real systems 
including very small ones. At the same time a thermodynamic 
approach to extremely small systems has serious limitations. 
For example, calculations of the average value of the Helm- 
holtz energy F can be done formally for any ~ y s t e m . ~  
However, it does not always lead to the conclusion that sub- 
stance transfer should go in the direction of a Helmholtz 
energy gradient. Fluctuation of F can appear to  be higher 
than its average value, which means that the average value of 
F is meaningless. Therefore, it is better to discuss such small 
biological systems in the expressive kinetic form without the 
statistical mechanics approach. Finally, we think that calcu- 
lation of Helmholtz energy difference and experimental 
example given in ref. 3 are possibly incorrect. 

I would like to  thank the referees for their remarks, which led 
to significant improvement of this paper, Dr. A. N. Tikhonov 
for helpful discussions and Prof. Yu. A. Chizmadzhev for 
introducing me to this problem. 
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