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Abstract-Steady one-dimensional electrolysis of a metal salt in a system with a supporting electrolyte is 
considered. The electrolyte in the system investigated is made up of three ionic species, one of which takes 
part in the electrode reactions. Attention is restricted to the quite common cases where the transfer 
coefficient in the Butler-Volmer law for the electrode kinetics is 4. For reasons of algebriac simplicity, the 
main part of the paper deals with the special case with two species of cations of charge numbers 2 and 1, 
respectively, and one species of anions of charge number 1. However, all results are easily generalized to 
any set of charge numbers. In the special case of a binary electrotype, an exact explicit simple expression 
is computed for the polarizarion curve. Also the drops in ohmic potential, concentration overpotential in 
the electrolyte and the surface overpotentials. are computed as functions of the electric current density. In 
the general case with three ionic species, an exact expression for the polarization curve is given in implicit 
form. In the limiting case of the polarization curve and the aforementioned parts of the difference in 
potential between the electrodes. For the diffusion layer configuration, and explicit expression for the 
polarization curve is computed for a system with arbitrary charge numbers and a more general form of 
the Butler-Volmer law. 
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NOMENCLATURE 

nondimensional constant of integra- 
tion 
dimensional concentrations of 
species 1 ,  2 ,  3 mol m - 
dimensional initial concentrations of 
species 1 , 2  and 3 mol m - 
dimensionless concentrations of 
species 1 ,  2, 3 
diffusivity for species 1 
unit electron charge 
dimensionless half-wave potential 
dimensionless function entering 
Butler-Volmer law 
f (c l ( 0 ) )  

f ( ~ l ( 1 ) )  
Faraday's constant C mol - 
dimensionless function entering 
Butler-Volmer law 
dc ,(ON 
g(c , ( l ) )  
dimensional electric current density 
Am-2 
dimensional exchange current 
density Am- 
dimensionless electric current 
density 
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dimensionless exchange current 
density 
dimensionless limiting current 
density 
dimensionless polarization curve 
dimensionless initial concentration 
of species 1 
dimensional distance between elec- 
trodes m 
notation of species 1 
notation of species 1 as cation 
auxiliary function 
auxiliary function 
dimensional spatial coordinate m 
gas constant JK-I  mol- ' 
absolute temperature K 
dimensional difference in electric 
potential between electrodes V 
dimensionless difference in electric 
potential between electrodes 
auxiliary variable 
upper bound for the auxilliary vari- 
able y 
absolute value of charge number of 
species i 
normalized absolute values of 
charge numbers of species 1 and 2 
symmetry coefficient, dimensionless 
dimensionless drop in electric poten- 
tial in electrolyte 
dimensionless ohmic potential drop 
in electrolyte 



dimensionless drop in concentration 
overpotential in electrolyte 
dimensionless initial concentration 
of species 1 from formula 52 
dimensionless spatial coordinate 
dimensionless electric potential in 
electrolyte 
auxiliary dimensionless variable 
dimensional electric potential in 
electrolyte V 

INTRODUCTION 

In the literature, there is a large documented body of 
empirical and theoretical knowledge, often made use 
of in technical applications, of transport in electro- 
chemical systems with a supporting electrolyte and 
operating in the regime of nonlinear reaction 
kinetics. The theoretical studies of ionic transport in 
electrochemical systems can be said to have started 
with the classical work on binary electrolytes by 
Nernst[l], who constructed a simplified but still 
physically realistic model by neglecting migration 
and assuming that the variation of the concentration 
near an electrode is linear. Outside the so called dif- 
fusion layer near an electrode, Nernst assumed that 
the concentration is constant. This model can, 
among other things, be used to explain, in a qualit- 
ative sense, the limiting current phenomenon. In all 
its simplicity, the diffusion layer, which in the liter- 
ature is frequently labelled the Nernst layer, is a 
good model for eg the rotating disc electrode. 

Numerous studies have supplemented and 
improved upon the Nernst model[l]. Brunner[2, 3] 
accounted for migration and was able to compute an 
expression for the limiting current density for a non- 
symmetric binary electrolyte with charge numbers 
z,  # z, = 1. The results by Brunner were extended 
to a general binary electrolyte by Baars[4]. The 
modifications of the Nernst model to account for a 
supporting electrolyte were given by Eucken[5]. As 
an example of later generalizations of Eucken's 
work, one may mention the study by Hsieh and 
Newman[6], in which a system with three ions of 
arbitrary charge numbers were considered. In none 
of these studies was reaction kinetics accounted for. 

A large number of papers in the literature deal 
with the role of reaction kinetics on transport in 
electrochemical systems. Therefore, only a few of the 
most pertinent contributions are mentioned here. 
Two-dimensional transport due to migration was 
considered by Wagner[7], who derived analytic 
solutions for the quite common cases in which the 
Butler-Volmer law for the reaction kinetics can be 
locally linearized. In the work by Heyrovsky and 
Ilkovic[8], diffusion transport and nonlinear reac- 
tion kinetics was investigated and an approximate 
model of semiempirical nature was proposed. In that 
work, the useful concept of the half-wave potential 
was introduced. This matter was further elaborated 
upon by Brdicka[9] in a study of reversible and irre- 
versible electrochemical systems. Reaction kinetics 
was also approximately accounted for in the work 
by Vorotyntsev[lO], where the general solution of 
the one-dimensional version of the Planck-Nernst 
equations was derived. 

In textbooks, see eg Vetter[11], Levich[12], Bard 
and Faulkner[13] and Newman[14], and, to the 
knowledge of the authors of the present paper, in the 
scientific literature on basic electrochemistry, some 
of which have been briefly reviewed above, the 
analytic mathematical treatment of potentiostatic 
electrolysis of systems operating under conditions of 
nonlinear reaction kinetics is, with one exception to 
be discussed below, incomplete in the sense that 
some kind of approximation procedure has always 
been resorted to. From a mathematical point of 
view, the most common type of approximation is lin- 
earization, which is valid at low current densities or 
for modest variations of the electric current. There 
are two other limiting cases that are frequently con- 
sidered in the literature. In the first of these, which is 
sometimes labelled reaction controlled, it is assumed 
that effects of transport of reagents in the electrolyte 
can be neglected. Almost all of the potential drop 
between the electrodes is assumed to be made up by 
the overpotentials at the surfaces of the electrodes. 
For the mathematical modeling of such systems, one 
may often use a simple Tafel law or some modifi- 
cation thereof to correct for effects of transport, see 
eg [8]. For the second limiting case, the transport of 
reagents is crucial and the concentration of carriers 
of charge is usually taken to be small near one of the 
electrodes. In other words, one is then restricting the 
analysis to current densities that are close to the lim- 
iting current density. 

As far as approximations made in the derivation 
of formulae for polarization curves, an exceptional 
study by Pritzker[15] has recently appeared in the 
literature. In this work, no approximation are used 
for the solution of the governing equations. 
However, when constants of integration are deter- 
mined from prescribed boundary conditions, a 
system of four nonlinear algebraic equations has to 
be solved by numerical methods. In addition to 
numerical results, Pritzker[15] gives some inter- 
esting explicit solutions for the cases of small current 
densities and for current densities that are close to 
the limiting current density. Pritzker restricts atten- 
tion to a system of the diffusion layer variety. In the 
present work, emphasis is put on the somewhat more 
complicated case with two electrodes. The diffusion 
laver is brieflv discussed in A p p e n d i x  A. 

O ther  analytic simplification procedures for 
diffusion-migration problems, which in the end rely 
on simple numerical computations, have been 
recently developed by Baker et al.[16], Oldham[17], 
Baker[l8] and Myland and Oldam[19]. An inter- 
esting approximate analytic solution for the growth 
of spherical clusters has been obtained by 
Milchev[20]. The computation of polarization 
curves may, of course, also be carried out by using 
numerical methods from the outset. In the literature, 
there is a large number of papers in which such 
methods are used, see eg Gu et al.[21] and Mao et 
a1.[22] and the references therein. 

Although results from different approximation 
procedures have, in a large number of cases, formed 
the basis for indeed very successful experimental pro- 
cedures for eg determination of kinetic parameters 
for performance of certain electrical systems, the lack 
of exact solutions of realistic basic model equations 
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has had some undesirable consequences. Firstly, the 
accuracy of measured kinetic parameters such as the 
exchange current density is sometimes not satisfac- 
tory. For several systems, only one digit has been 
determined. This may at least partly be due to the 
fact that, as was clearly pointed out by Pritzker[15], 
the approximate analytical formulae, to which 
experimental data are to be fitted by adjusting 
kinetic parameters in the mathematical model, have 
a limited range of validity. Thus, only limited ranges 
of experimental data can be used. Secondly, from a 
fundamental point of view, it is a bit unsatisfactory 
to compute the limiting current density at that value 
at which the concentration(s) of the species that 
transport charge is (are zero. Although the procedure 
is formally correct, the result does not tell how the 
limiting current density is approached as the primary 
control variable of the system, the difference in 
voltage between the electrodes, becomes large. 

In the present paper, an exact solution, the 
implicit form, is given for the polarization curve for a 
system of quite general nature. A one-dimensional 
system, in which transport takes place due to diffu- 
sion and migration, is considered. Thus, advective 
transport is left out which means that the validity of 
the results are formally restricted either to systems 
with a solid electrolyte or, in case of a liquid electro- 
lyte, to systems having horizontal electrodes being 
arranged so that the electrolyte is always stably 
stratified. The system considered is made up of three 
ionic species, which is often the situation at hand for 
an aqueous solution of a metallic salt with a sup- 
porting electrolyte. A standard form of the Butler- 
Volmer law with the value $ of the transfer coeffi- 
cient is chosen as model for the reaction kinetics. 

As only exact solutions or accurate approx- 
imations thereof are considered in this paper, use 
will only be made for the physical concepts electric 
current, overpotential and electric potential. There is 
thus no need to subdivide, as is sometimes done in 
the literature, the electric current into primary, sec- 
ondary and tertiary current. When appropriate, 
however, the contributions to the total potential 
drop from the ohmic, concentration and surface 
potential drops are commented upon. 

The organization of the present paper is as 
follows. In Section 2, the mathematical formulation 
of the problem is given. The solution of the problem 
is derived in Section 3. Although the mathematics 
used in this derivation is elementary, the manipula- 
tions are a bit lengthy* and of unusual nature. 
Among other things, the calculus involves extensive 
algebra with unknown boundary values of the 
dependent variables. The main obstacle in the deri- 
vation is thus algebraic organization rather than 
mathematical analysis. Therefore, those readers, who 
may not be particularly interested in formal details, 
may well proceed directly to Section 4, which gives a 
summary of the formulae derived and a discussion of 
some general properties of the solution. In Section 5, 
some interesting limiting cases are discussed and 
some simple approximate explicit solutions are 

* Most of the algebra carried out in Section 3 has been 
checked by using automatic symbolic manipulation. 

given. Section 6 contains a discussion of some typical 
polarization curves. The essentials of the paper are 
summarized in Section 7. In Appendix A, results are 
given for the diffusion layer configuration. Results 
for a more general Butler-Volmer law than the one 
used in the main body of the paper but still restricted 
to the value $ of the transfer coefficient are given in 
Appendix B. 

2. PROBLEM FORMULATION 

Consider the steady, one-dimensional potentio- 
static electrolysis of a dilute electrolyte that, in addi- 
tion to the solvent, consists of three ionic species. 
Attention is restricted to cases such that species 1 
and 2 are cations and species 3 is an anion. Further- 
more, it is assumed that only species 1 participates in 
the reactions at the electrodes, which is typical for a 
metallic salt. In other words, if species 1 is labelled 
M, the electrode reaction at the anode is given by 
the simple formula 

At the cathode, the same reaction is assumed to 
proceed in the opposite direction. None of the 
assumptions made so far are really important for the 
development in this paper and can be dispensed with 
at the cost of some algebraic complications. The 
transport mechanisms to be accounted for are diffu- 
sion and migration but not advection, ie the electro- 
lyte is assumed to be motionless. Thus, the system 
considered can either be thought of as one in which 
there is a separator of low permeability between the 
electrodes or a system with a liquid electrolyte that is 
contained between two horizontal electrodes under 
conditions such that no free convection occurs. The 
case with a vigorously stirred electrolyte, for which 
the diffusion layer model is applicable, is dealt with 
in Appendix A. 

The position between the electrodes is denoted by 
the coordinate x. The cathode is at x = 0 and the 
anode at x = L. It turns out to be convenient to 
choose the reference level of the electric potential 
such that the potential of the cathode is zero. The 
electric potential of the anode is taken as V. In the 
electrolyte, the electric potential 4 under conditions 
of current flow is defined relative to the equilibrium 
potential distribution in the cell. It is assumed that 
there is no potential redistribution in diffuse double 
layers during current flow. As will be apparent 
below, the definition leads to an algebraically simple 
form of the Butler-Volmer law. 

In the case of a dilute electrolyte, the Nernst- 
Einstein relation for the mobility is valid and the fol- 
lowing equations are to be solved for the 
concentration fields Ci(x), i = 1, 2, 3, and the electric 
potential Wx): 



z l C 1  + z ,  C ,  = z ,  C , .  

The constants that appear in these equations are 
D l ,  the diffusion coefficient of species 1 ,  z i ,  i  = 1 ,  2, 
3, which are here taken as the absolute values of the 
charge numbers for the three species, Faraday's con- 
stant F, the gas constant R, the absolute temperature 
T and the constant, but so far unknown, electric 
current density i that flows across the system. Equa- 
tion ( 1 ) ,  which is Faraday's law combined with the 
Planck-Nernst law for the mass flux of species 1 ,  
states that the electric current is carried by species 1 
only whereas equations (2)  and (3 )  imply that there is 
no flux of species 2  and 3. The condition of local 
electroneutrality is stated by equation (4).  

At the electrodes, the electric current density i  is 
specified in terms of the surface overpotentials at 
cathode and anode, which are 4(0) and V - W L ) ,  
respectively, by the following Butler-Volmer law: 

cathode (5) 

anode. (6) 
Here i, is the exchange current density at a refer- 

ence concentration Cy of species 1 that will be speci- 
fied in a moment. a is the transfer coefficient. The 
factors C,(O)/C: and Cl(L) /Cy  in these formulas 
account for the concentration dependence of the 
anodic relation at the cathode and the cathodic reac- 
tion at the anode. A more general form of the 
Butler-Volmer law is considered in Appendices A 
and B. 

Because the reactions at anode and cathode, by 
assumption, proceed at the same rate, one has to 
specify conservation conditions for the three species, 
ie how much of each species that is present per unit 
length and width of the cell. Thus, the following con- 
ditions are prescribed: 

C i  dx = Co L, i = 1 ,  2, 3, (7 )  

where Cp are initial concentrations that, due to the 
condition of electroneutrality, see equation (4),  
cannot be specified independently, cf. formula (9) 
below. 

In order to proceed without excessive algebra, a 
special case will be considered in the remaining part 
of this section. Attention will be restricted to cases 
where the transfer coefficient a is equal to 4. This 
restriction is crucial for the mathematical solution 
procedure made use of in this work. Also, the values 
z l  = 2,  z ,  = 2,  = 1 are chosen. The case dealt with 
may thus be exemplified by eg an aqueous solution 
of CuSO, with H2S04 as a supporting electrolyte. 
At reasonably low concentrations, H2S04 disso- 
ciates mainly into H +  and HSO; . If the concentra- 
tion of copper sulphate is less than half of that of the 
sulphuric acid, species 1 ,  2  and 3  can be taken as 
Cu2+, H +  and HSO;. Electrolytes with arbitrary 
change numbers are considered in Appendices A and 
B. 

The formulation of the mathematical problem is 
now complete. The problem addressed is to compute 
C i ,  4 and the unknown current density i in terms of 
V for given values of the physical constants of the 
system. Before the derivation of the solution is given, 
the mathematical problem will be formulated in 
dimensionless form. 

It turns out to be expedient to use the reference 
concentration C! as the concentration scale. Dimen- 
sionless concentrations c ,  are thus defined as 

Instead of defining dimensionless reference concen- 
tration in the same way, it is, according to the 
remark following formula (7)  above, more appropri- 
ate to introduce a quantity k, which relates C y ,  
i  = 1 , 2  and C: as follows: 

The quantity k is thus restricted by the inequality 
0 < k d 4. Dimensionless length coordinate 5,  elec- 
tric potential 9 and current density j  are defined by 
the formulae 

It should be noted that the dimensional current 
density i  in the present problem is negative, which 
means that the dimensionless current density j, as 
defined above, is positive. Also, the following dimen- 
sionless parameters will appear: 

FV . Li, y = -  RT'  Jo = - FD,C:  

The parameter jo is thus the ratio between the 
exchange current density and the absolute value of 
the limiting diffusion current density. The values of 
jo that appear in applications can be either very 
large, of order unity or very small. As is well known, 
this offers possibilities for approximations, ie the 
Nernst approximation for j ,  % 1 and the Tafel 
approximation for j ,  4 1 .  However, this aspect of the 
problem to be dealt wlth will not be considered here. 
j ,  is thus assumed to be a fixed quantity. 

In terms of the dimensionless quantities defined 
above, one finds the following dimensionless equa- 
tions to be solved: 

2c1 + c, = c , .  (15) 

The dimensionless versions of the boundary condi- 



Diffusion-migration transport in a system 1987 

tions (5) and (6) are 

e -No) ,  cathode, (16) I 
The dimensionless form of the conservation condi- 
tions (7) is 

r 1 

The potential drop in the electrolyte, which will be 
discussed in some detail later, can, according to 
equation (l2), be written in the following form 

In this expression, the first term is the ohmic poten- 
tial drop and the second the concentration over- 
potential drop. These quantities are henceforth 
labelled and A#,,,, , respectively. 

3. SOLUTION FOR A BINARY 
ELECTROLYTE 

In this section, an expression for the polarization 
curve in the simplest case, ie that for a binary elec- 
trolyte, will be computed. For k = f and c ,  = 0, one 
obtains in terms of the concentration variable c = 
2c1 = c, the following reduced version of the 
problem that was formulated in the last part of the 
previous section : 

The solution of these equations has to fulfil the 
boundary conditions 

j = ~ ~ [ c ( O ) e ~ ~ ~ )  - e-*Oq, cathode, (22) 

j = jo[ev-"I) - c(l)e*l)'-Y], anode, (23) 

and the constraint 

Elimination of 4 between equations (20) and (21) 
leads to a simple ordinary differential equation for c, 
whose solution is 

where C is a constant of integration that is deter- 
mined by the constraint (24). A minor computation 
gives that 

In the present non-dimensionalization, the value of 
the limiting current j, is thus 

a result first obtained by Baars[4]. The ohmic poten- 
tial drop and the concentration overpotential drop 
can now be computed from formula (19), whereby 
one finds that 

and 

The formula for the A#,,,, is of the expected form 
whereas that for is perhaps a little surprising. 
One would tend to believe that would be 
proportional to the electric current density j but this 
is so only for small values of j. The singular behav- 
iour of A#,,,,, as j approaches j, is due to the fact 
that the resistivity, which is - c ,  then approaches 
zero locally at a cathode. 

It remains to compute the surface overpotentials 
at the anode and cathode, respectively, ie #(0) and 
Y - #(I). Equations (22) and (23) are second order 
algebraic equations for eO(0) and e Y  - +(I). Solution 
of these equations and substitution of expression (26) 
in the results given the following formulae 

The first of these formulae shows clearly the well 
known singular behaviour of the surface over- 
potential at the cathode as the limiting current is 
approached. This singularity is a consequence of the 
fact that the rate of the cathodic reaction at the 
cathode, which dominates over the anodic reaction 
except for very small current densities, is proportion- 
al to the concentration, see formula (22). As the con- 
centration at the cathode approaches zero, an 
infinite surface overpotential is needed to sustain a 
finite electric current. 

Collecting the results given above leads to the fol- 
lowing expression for the polarization curve for a 
binary electrolyte 

4. SOLUTION FOR THE CASE WITH A 
SUPPORTING ELECTROLYTE 

For the case to be dealt with in this section, it 
turns out to be expedient to use a solution procedure 
that is a little different from that used for the binary 
electrolyte. The solutions of equations (13) and (14) 
in Section 2 can be written as 



where c2(0) and N are two constants of integration 
to be determined. The first step of the solution pro- 
cedure that is given in this section is to derive a rela- 
tion of the form N = 4F(Ac$) between 
A# = #(I) - #(O), which is the so far unknown dif- 
ference in electric potential in the electrolyte at the 
anode and cathode, respectively, and N, which is 
also unknown a priori. Thereafter, the current 
density j and the difference in electric potential 
between the electrodes .Y will be computed in terms 
of N and A+, which gives an implicit form of the 
sought relation j = / (Y). Somewhat unfortunate, as 
the quantities N and A 4  are parts of the solution 
itself, the parameterization chosen does not directly 
involve quantities that are closely related to the 
enternally controllable parameters k and Y of the 
system. However, this is a price that has to be paid 
for reasonable algebraic convenience. As was pointed 
out in the introduction, the solution procedure is a 
little technical. Therefore, the reader, who is mainly 
interested in the results, may well go directly from 
here to the next section where results are sum- 
marized. 

Combination of equations (12)-(15) gives the 
useful relation 

The third of conservation conditions (18) can be 
written 

Substitution of expressions (34) for c, and (35) for 
dt/d4 then gives, after a little computation, that 

where the quantity y, which will henceforth be used 
frequently, is defined as 

Using the second of conservation conditions (18) one 
finds, in an analogous way, that 

By dividing equation (37) by equation (39), one finds 
a second order algebraic equation for N in terms of 
y, whose solutions are 

It can be shown that only the solution with the + 
sign preceding the square root leads to physically 
realistic results. (The details of the proof are a bit 

tedious and are therefore not given here.) As pointed 
out in the beginning of the section, the relation (40) 
between N and A4 forms the basis of the para- 
metric representation of the solution. 

The next step is to compute the current density j 
as function of N and A4. Equations (37) and (39) 
are insufficient for this purpose and an additional 
relation between c,(O), j, N and y is needed. The 
relation needed is obtained by using equation (35) 
and the identity 

which, after using equations (33) and (34) and some 
algebra, gives that 

From equation (37) and (42) one then finds the fol- 
lowing expression for c2(0) in terms of y  and JV 

which will be used in a moment, and that 

So far use has not been made of the Butler-Volmer 
law, eg formulae (16) and (17), which are the rela- 
tions needed to compute Y in terms of N and A$. 
However, in order to make use of these formulae, 
expressions of cl(0) and c l ( l )  are needed. These 
expressions are obtained from the condition of elec- 
troneutrality, ie equation (15), and expressions (33) 
and (34) for c2 and c, ,  respectively. One finds that 

c1(0) = iw - l)c,(O) (45) 

and 

~ ~ ( 1 )  = +(Ny1l2  - y -  112)~2(0) ,  (46) 

where c2(0) is given by formula (43). Formula (16) 
can now be solved as a second order algebraic equa- 
tion for eHO) in terms quantities that are known func- 
tions of y and N ( y ) .  One finds that the physically 
realistic solution of that equation gives that 

4(O) = In [,/(kj)' + 4kjt cl(0) + kj] 
2j0 c (0) 

(47) 

A similar expression can be derived for Y - #(I) 
from equation (17). Using the definition (38) one has 
the following identity 

which, when combined with the aforementioned 
expressions for b(0) and V - # ( I )  gives that 
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5. SUMMARY OF FORMULAE 

In the previous section, the following formulae for 
N ( y )  and j (y ,  N )  were derived 

Formula (49 )  can, by using expressions (43- 46)  
and (51), be written in the following form 

r 

These three formulae constitute, in implicit form, 
the exact solution of the problem stated. In general, 
one cannot eliminate N and y from the solution to 
obtain the function j = f ( Y )  in implicit form but 
one has to use some simple numerical evaluations of 
elementary functions. The solution procedure is to 
compute, for a given value of k, N as function of y 
from equation (50) .  The quantity y varies monotoni- 
cally between 1 and a number y, > 1 that will be 
specified in a moment. One then obtains j and Y as 
functions of y (and, of course, the parameters j, and 
k), between which y can be eliminated leading to the 
function j = / (V). Some comments on the general 
character of the solution are in order. 

At low current densities j, the potential drop A$ in 

the electrolyte is small, which means that, see defini- 
tion (38) ,  y is slightly larger than 1. Series expansion 
of formula (50 )  then gives that 

1 3  
N = - [- - + O((y - l ) ' ) ] .  (53 )  1 - 2 k  2 

The singular behaviour of N as k + f - 0 is just of 
formal nature and comes from the parameterization 
chosen. For k being close to i, the electrolyte is 
almost binary, see conservation conditions (18) .  The 
concentration c, is then small, which means that N ,  
according to its definition (34) ,  has to be large for 
c3(0)  to be finite. An approximate expression for 
j = f ( Y )  for small current densities is given in the 
next section. 

At the limiting current density, where c l ( 0 )  = 0 
and c,(O) = c,(O), one finds that N = 1. The corre- 
sponding value of y,  which is henceforth labelled y , ,  
is to be computed from the equation 

which is readily derived from formula (50) .  Accord- 
ing to equation (54) ,  k -, f - 0 implies that y, -+ oo. 
This quantifies the well known fact that as Y -+ co, 
the potential drop A$ in the electrolyte between 
anode and cathode approaches oo if the electrolyte is 
binary but stays finite for a finite concentration of 
supporting electrolyte. Roughly speaking, the reason 
for this behaviour is that, for a binary electrolyte, the 
conductivity is locally zero at the cathode, but is 
finite if a supporting electrolyte is present. 

Figures 1 and 2 show the auxiliary functions N ( y )  
and y,(k), which are defined by formulae ( 5 0 )  and 
(54) .  These functions do not have a clear physical 
interpretation but are shown to provide the reader 
with some feeding for the nature of the solution that 
is given by formulae (50,  5 1 )  and (52) .  The concentra- 
tion profiles in a typical case are shown in Fig. 3.  

The results for the case of a binary electrolyte, 
which were derived in Section 3,  are recovered from 
formulae (50-52), the limit k -+ f - 0 .  

Y 
Fig. 1. The auxiliary function N(y) for k = 0.3 and j ,  = 1. In this case y, = 4.76552. 



Fig. 2. Magnitude of the potential drop A+ in the electrolyte, here measured as y,(k) = eZA4, as function 
of k at the limiting current density. Note that y,(O) = 1 .  

Fig. 3. Concentration profiles in a case with a supporting electrolyte. k = 0.425, j = 2.4, j ,  = 3.43. 

6. SOME LIMITING CASES corresponding expression is more complicated. One 
finds the following formula 

In this section, some physically interesting and 
algebraically transparent limiting cases of the 
implicit solution that is defined by formulae (50-52) 

(56) 

are given. Some of these formulae are well known in where the constant is given by the following limit 
the literature whereas others are not. 

A particularly simple case is the limit of small 
current density, for which the potential drop in the 
electrolyte, measured in terms of y, is close to 1. d = lim 
After some algebra, one obtains the well known 
result that 

In the right hand side of this equation, the first term 
represents the reaction resistance and the second 
term the ohmic resistance, sometimes called the dif- 
fusion resistance. The corresponding formula for a 
diffusion layer was given by Pritzker[15]. 

The opposite limit, ie when the current density j 
approaches the limiting current density j,, say, the 

The expression for d in terms of k, y ,  and j, is com- 
plicated and is therefore not given here. Formula (56) 
is a mathematical demonstration of the empirically 
well known fact that the current density approaches 
the limit current density exponentially as the voltage 
jr between the electrodes increases. A similar 
formula for the diffusion layer configuration was 
given by Pritzker[15]. 

Another limit of significant interest is that of a 
large excess of supporting electrolyte. Because, in the 
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scaling chosen, the concentration of the charge 
carrying species, will then be small, ie - k ,  and so 
will the variation of the potential in the electrolyte. 
The approximate solution, with an error - k 3 ,  of 
equation (54) for y, at the limiting current density is 

A suitable parameterization of the variation of y is 
thus 

One finds, after some algebra, from formula (50) that 

In this particular case, formula (52) turns out to be a 
bit inconvenient from an algebraic point of view. 
Some algebra can be dispensed with by using 
formula (49) directly and use the formulae (58) and 
(59) in formulae (43)-(46) to compute j, cl(0)  and 
c , ( l )  to second order in k. The results are 

and 

In the present notation, the limiting current is thus 
given by the expression 

the lowest order of which is frequently given in the 
literature but whose origin appears to  be unclear. 
Using the aforementioned expressions for j and j *  
one can express /3 approximately in terms of j/j, with 
the following result 

Combination of formulae (64), (60)-(62) and (49) 
then gives, with an error -- k 2  for all values of j, the 
following relation between 7r and j 

As expected, this formula shows that V- becomes 
infinite as k  approaches zero. The nature of this sin- 
gularity will be elucidated in a moment. 

In the same way as was done for the binary elec- 
trolyte, one can compute the separate contributions 
to the difference in voltage 7' between the electrodes. 
The computations are simple but a little tedious. 
Therefore, for brevity's sake, the results are stated 
directly without deviation. One finds that 

Formulae (67) and (68), which to these authors 
knowledge have not been given in the literature 
before, show that the differences in both ohmic 
potential and concentration overpotential across the 
electrolyte are singular as the limiting current is 
approached. However, the singular parts of these 
two contributions cancel when adding up to the (well 
known) small value of A$ that is given by formula 
(66). As was found to be the case for a binary electro- 
lyte, is proportional to j only for small values 
of this quantity. The singular behaviour of the 
surface overpotential $(O) at  the cathode as the limit- 
ing current is approached is of the same nature as for 
the binary electrolyte, cf formula (30). For the very 
same physical reason, the cathodic surface over- 
potential is singular in the limit k  approaching zero. 

Other interesting cases, which are possible to 
examine in a rigorous way, are higher order correc- 
tions of known lowest order results in the limits 
j ,  + 0 +  and j, + co for a fixed value of k. One may 
also, by taking further terms in the approximate 
expressions used, compute explicit corrections to for- 
mulae (65) and (32). In the former case, the correc- 
tions would account for higher order effects of a 
small but finite concentration of species 1. The cor- 
rections to formula (32) would quantify modifi- 
cations on a system with a binary electrolyte due to 
a small but finite concentration of a supporting elec- 
trolyte. However, these matters will not be pursued 
in this work but will be reported on elsewhere. 

7. EXAMPLES OF POLARIZATION CURVES 

Figure 4 shows some polarization curves for differ- 
ent values of k  for a fixed value of j,. The general 
behaviour of the curves are as expected. The decreas- 
ing magnitude of the limiting current density is 
simply a consequence of the normalization used. For 



v 
Fig. 4. Some polarization curves for j ,  = 1 and different values of k. (a) k = 0.49, (b) k = 0.4, (c) k = 0.30. 

smaller values of k, there are less carriers of charge 
available. An interesting property of the curves in 
Fig. 4 is that the limiting current density is 
approached slower at large values of Y as k is 
increased. This reflects the fact, which is perhaps not 
altogether unexpected, that depletion of species 1 
near the cathode takes place for smaller values of Y 
for smaller concentrations, ie smaller values of k. 

The magnitude of the limiting current density, 
normalized with the dimensionless concentration 2k 
of species 1, as function of k is shown in Fig. 5. This 
graph shows the square root behaviour of j, near 
k = 4 that was first demonstrated by Eucken[5]. 

The change of character of the polarization curve 
as the exchange current increases for given value of k 
is illustrated in Fig. 6. As j, is increased above a 
certain value, an inflection point appears in the 
polarization curve. As is well known from experi- 
ments and semi-empirical theories, there are two 
possible shapes of the polarization curve. The char- 
acter of the polarization curve is frequently used to 
classify the reaction kinetics as either "facile' or 

"sluggish", see eg Bard and Faulkner[13]. The pos- 
sible values of j, for which an inflection point 
appears for a given value of k can be inferred from 
Fig. 7, which shows the magnitude of the half-wave 
potential El,, where it exists. For traditional 
reasons, the lg-function has here been used instead of 
the In-function for the abscissa. 

In Fig. 8, an exact polarization curve is compared 
with the approximate formula (55) for small current 
densities, formula (56) for large values of Y and the 
classical Tafel law. This graph shows that the ranges 
of accuracy for formulae (55) and (56) are quite 
limited whereas that of the Tafel approximation is 
quite large. 

8. CONCLUSIONS 

An exact solution in implicit form has been com- 
puted for the polarization curve for a system with 
symmetric reactions but arbitrary charge numbers 
and an arbitary Butler-Volmer law. The special case 

Fig. 5. Magnitude of the limiting current density ), normalized by twice the concentration of species 1, ie 
2k, as function of k .  
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Fig. 7. Magnitude of the half-wave potential and the range where it exists as function of j, for k = 0.3. 
There is no half-wave potential for lg j, > -0.738. 

Fig. 8. A comparison between an exact polarization curve and different common approximations for 
k = 0.3 and j ,  = (a) exact, (b) small current density approximation, (c) Tafel approximation, (d) 

large approximation. 



with an anion of charge number 1 and two cations of 
charge numbers 1 and 2, respectively, and a simple 
but commonly used form of the Butler-Volmer law 
was treated in some detail. An exact explicit formula 
for the polarization curve for a binary electrolyte 
was given. An approximate formula was given for a 
system with a large surplus of supporting electrolyte. 
In contrast to previously given approximate formu- 
lae, the present results are valid for any magnitude of 
the exchange density. It is believed that some of the 
results in this paper will be of value for experimental 
determination of kinetic parameters. For instance, as 
was pointed out by Pritzker[l5], an incorrect Tafel 
slope may be inferred from experimental data if 
effects of transport are not properly accounted for. 
The results given may also serve as tests for numeri- 
cal methods. 
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APPENDIX A 

T h e  diffusion layer  fo r  a s y s t e m  w i t h  a r b i t r a r y  charge  
numbers  and a general But ler- Volmer l a w  w i t h  
transfer  c o e f l c i e n t  f 

The diffusion layer version for the problem dealt 
with in the main part of this paper offers some sig- 
nificant algebraic simplifications. Therefore, a con- 
siderably more general electrochemical system can 
be dealt with without much additional effort. Firstly, 
the charge numbers of the three ions are in this 
appendix kept arbitrary. Secondly, a very general 
form of the Butler-Volmer law can be considered. 
However, it turns out that, in order to obtain a rea- 
sonably simple solution, one is still forced to restrict 
the development to reactions whose transfer coeffi- 
cient is 4. Attention is also restricted to cases such 
that only one species, here labelled species 1, carries 
charge. In Appendix 2, results for the more general 
system but in the configuration discussed in Sections 
2-7 are given. 

As is customary in the electrochemical literature, 
the thickness L of the diffusion layer is assumed to 
be known. The initial concentration c! for species 3 
is taken as concentration scale also in the present 
diffusion layer problem. The dimensionless quan- 
tities r,  j and j, are defined as before, ie according to 
formulae (10) and ( l l ) ,  respectively. However, the 
dimensionless electric potential 4 and dimensionless 
difference in electric potential between the electrode 
and the edge of the diffusion layer, ie  V ,  are in this 
appendix defined by the formulae 

As the charge numbers z i ,  i = 1, 2, 3, are now 
arbitrary, the quantity k that appears in formulae (9) 
cannot be used as defined. In view of the general 
form of the condition for local electroneutrality, it 
turns out to be convenient to introduce another 
quantity K that relates the initial concentrations for 
species 1 and 2 to that of species 3 by the following 
relations : 

where, as before, C:,, are the initial concentrations 
for species 1 and 2, respectively. Furthermore, it 
turns out to be expedient to define normalized 
charge numbers according to the following formulae: 

These normalized charge numbers may, of course, be 
fractional and there is a priori no restriction on 
whether Z2 is positive or negative. 

In terms of the dimensionless quantities that were 
defined above, the generalized versions of equations 
(12)-(15) are found to be 



Z1cl + Z 2 c 2  = c3. (A5) 

At the edge of the diffusion layer, ie at 5 = 1, the 
following boundary conditions are prescribed: 

The first three of these boundary conditions simply 
state that the electrolyte outside the diffusion layer is 
unaffected by the transport inside the layer, which is 
not an unreasonable model for eg a rotating disc 
electrode. The fourth boundary condition states that 
the electric potential at the edge of the diffusion layer 
is equal to a constant. This value can, without loss of 
generality, be set equal to zero. This is an often ideal- 
ization, which may perhaps be a little hard to realize 
in an experiment, but is here chosen for its simpli- 
city. Results for such an idealized case are still 
believed to be of significant didactic value. 

At the electrode, ie at  5 = 0, the following Butler- 
Volmer law is prescribed 

where f(c , )  and g(cl) are any given functions of c,.  
Taking 4, = 4(O) instead of y as the parameter in 

the implicit form of the solution and using the meth- 
odology outlined in Section 3, it is not hard to derive 
the following counterparts of equations (43), (45) and 
(51) 

Using the notation 

For any given functions f and g that depend on the 
concentration fields c , , , ,  formulae (80-82), with 
expressions (A8)-(A9) substituted into f and g, define 
the polarization curve j = j ( Y )  in implicit form. 
The general properties of the solution is very much 
like that given in Section 4. 

APPENDIX B 

Extension of the results given in Section 4 to a more 
general system 

In this appendix, the same kind of electrochemical 
system as the one considered in Sections 2-7 is con- 
sidered but for the more general electrolyte and reac- 
tion kinetics that was dealt with in Appendix A. This 
means that the system of equations to be solved are 
equations (A2)-(AS). The boundary condition at the 
cathode, ie equation (A7), will remain the same 
whereas that at the edge of the diffusion layer has to 
be replaced by 

where, in analogy with equation (A1 1), the following 
notation has been used 

The solution of equations (A2)-(AS) subject to the 
boundary conditions (A7) and (Bl) and the conserva- 
tion conditions (Al) proceeds essentially along the 
same lines as in Section 3. However, the algebra 
involved is a little more complicated. Therefore, only 
the results are given here. The detailed manipula- 
tions are available on request from the authors. 

It turns out to be algebraically convenient to 
make a minor adjustment in the definition of the 
quantity y, which was used in Section 3 as the 
parameter in the implicit representation of the solu- 
tion, see definition (38). In this appendix, y is defined 
as follows 

For the more general system considered here, one 
has to introduce two auxiliary functions, N ( y )  and 
.M(y). These functions are defined by the following 
formulae: 

one can then, by using equations (80) and (77) In terms of these functions and the variable y itself, 
compute the following expression one can express the electric current density j implic- 

itly in terms of the difference in voltage .I.' between 

{ [\/j2 + 4~: f~go  -j]} ( A 1 2 )  the electrodes with the concentration variable K and .Y=-  4 , - I n  
Z I &I O J O  the dimensionless exchange current density j, 



appears as parameters. The results are as follows: 

In these expressions, one has to insert the expression 
for the concentration c1 at x = 0, 1 into the func- 
tions f and g, respectively, see the definitions (B2) 

and (A1 1). The expressions required are 

If so desired, approximate formula for limiting 
cases such as a binary electrolyte or a system with an 
excess of supporting electrolyte can be derived in the 
same manner as was done in Section 5. However, 
these formulae will not be given here. 


