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Abstract 

Polarization curves are analyzed for two different types of parallel clcctrochemical reactions, with no supporting electrolyte in 
the solution. The consideration of the problem is based on an analytic solution in parametric form of Nernst-Planck equations 
for electrodiffusion with boundary conditions of the Butler-Volmer type. I t  is found that the current-voltage curves for such 
systems clearly display the interaction of ionic components due to migration current exaltation phenomena. 
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1. Introduction 

The  first experimental observation of the important 
role of electromigration in parallel electrochemical 
processes was made by Kemula and Michalski [1], who 
studied the  increase of the limiting current of polaro- 
graphic cation reduction in the presence of parallel 
reduction of oxygen. This phenomenon was called 
"migration current exaltation" and its first quantitative 
description was given by Heyrovsky and Bures [2]. They 
studied the polarographic irreversible reduction of Na' 
ions from dilute NaCl solutions. First, the polaro- 
graphic wave corresponding to  the discharge of Na' 
ions was recorded, then the solution was saturated with 
atmospheric oxygen from the air, and a new polaro- 
graphic wave was recorded. The  limiting current in the 
second case was higher than the sum of oxygen reduc- 
tion current i o 2  and the limiting current of Na' reduc- 
tion i,,+ in the  absence of oxygen. Heyrovsky and 
Bures called this additional current the "exaltation 
current" i,,,,: 

i = ic,2 + iNLl++ i  

The explanation of the migration current exaltation 
effect given in Refs. [3] and [4] was based on the 

* Corresponding Author: Present address: Department of Chem- 
istry. Trent University. Peterborough. Ont. K97 7B8. Canada. 

approximate method of calculation of migration cur- 
rent presented by Heyrovsky. In this method the  limit- 
ing current of discharging ions was taken as the sum of 
diffusion and migration currents, the last being as- 
sumed to be proportional to the total current with the 
proportionality coefficient being equal to the transport 
number of discharging ions. Heyrovsky's theory gives 
us a qualitative description of this phenomenon. 

In a series of publications [5-18] a theory of migra- 
tion current effects for parallel electrode reactions was 
presented, based on exact analytic solutions of coupled 
Nernst-Planck equations for electrodiffusion for two 
parallel electrode reactions. In particular, in contrast 
to the Heyrovsky theory, it was taken into account that 
as a result of reduction of neutral substance (oxygen) 
negatively charged reduction products O H -  ions) ap- 
pear in the diffusion layer close to the electrode: 

0, + 2 H 2 0 + 4 e - - 4 0 H -  

It was shown that the exaltation current depends on 
the mobility of O H -  ion u,,,- but not on anion 
mobility u , . , :  

For the case of two parallel reactions involving 
reduction of two different cations, an  extended theory 
of correlational exaltation of migration current describ- 
ing the mutual influence of ionic transport due to 
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electrodiffusion process was presented in Refs. [ 5 ]  and 
[7]. 

In the above-mentioned papers, only the relations 
between the partial limiting diffusion-migration cur- 
rents were found. In the present paper we describe the 
behaviour of total current-voltage curves for parallel 
electrode processes described by Butler-Volmer reac- 
tion kinetics with account of electromigration effects. 
For simplicity only the case of a stationary processes at 
a planar electrode with a one dimensional Nernst 
diffusion layer is considered. This analysis can be gen- 
eralized for corresponding non-stationary problems, 
such as parallel reactions at a growing mercury drop 
electrode, as considered in Ref. [9]. 

2. Problem formulation 

Consider a reaction with reduction of cations with 
simultaneous reduction of neutral species in the ab- 
sence of supporting electrolyte in the solution. The 
concentrations C, of cations (Na+, for instance), C, of 
anions (C1-, for instance), C, of negatively charged 
products (OH- ) of reduction of neutral molecules (0 , )  
together with the electric potential @ in the diffusion 
layer can, for dilute solutions, be computed from the 
Nernst-Planck equations for electrodiffusion 

dC1 FD,  d@ i, 
d~ +z,c,-- = - 

RT d X  Fz, 

dC3 FD, d@ io 
D 3 ~  

- z3C3- - - 
RT d X  Fz3 (3) 

Here D l  and D, are the diffusion coefficients for 
cations (Nat)  and anions (OH-), F the Faraday con- 
stant, R the gas constant, and T the absolute tempera- 
ture i, and i, are the electric current densities for 
neutral substance (0,)  reduction and discharge of 
cations (Na+), respectively. X is the coordinate per- 
pendicular to the electrode and z,,  z, and z, the 
charge numbers for cations (Na+), anions (C1-) and 
product of the second electrode reaction (OH-). It is 
assumed that the product of cation reduction is neu- 
tral. Below we shall consider the simple case z ,  = 2, = 

2 ,  = 1. 
The boundary conditions at X = L, where L is the 

thickness of the Nernst diffusion layer, are 

In terms of the dimensionless coordinate x = X / L ,  

concentrations cm = Cm/CO, (m = 1, 2, 3) and electric 
potential $ = F@/RT, Eqs. (1-4) may be written in 
the form 

Here j, = i ,  L/FD,C' and jo = ~,L/FD,CO. The solu- 
tion of Eqs. (6-9) is, see e.g. Refs. [5] and [6]: 

The current density at the electrode surface (x = 0) 
is assumed to be given by the following form of the 
Butler-Volmer law 

where j: is the exchange current density, a transfer 
coefficient, c,(O) the surface concentration of discharg- 
ing cations, $(O) the potential drop in the diffusion 
layer and V - 1,!40) the reaction overvoltage. 

3. Analysis of migration current exaltation 

Substitution of expressions for c,(O) and $(0) ob- 
tained from Eqs. (10) and (11) into the Butler-Volmer 
law gives the current-voltage curve for cation reduc- 
tion process in the presence of a parallel reaction 

From this relation, one can in the simplest case with 
a = 1/2, compute V in terms of j,, which gives: 

1 ;': ( jl ; ~ ~ ) j " ~ ]  

- 2 arcsinh - 1 - - 
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4. Analysis of correlation exaltation of migration cur- 
rent 

Consider now the parallel reduction of two different 
cations X C  and Y' in the absence of supporting elec- 
trolyte. For z ,  = z ,  = z ,  = 1, the corresponding dimen- 
sionless equations for electrodiffusion are 

Fig. 1. Current-voltage curves determined by Eq. (14) jy = 0.001; 1: 
jo = 0; 2: j, = 1; 3: j, = 2; 4: j, = 3; 5 :  j, = 4. 

In the general case with an arbitrary value of the 
transfer coefficient a ,  it is possible to express the 
current-voltage curve in parametric form. Denoting 
q = V- $(0) and substituting the expression for c,(O) 
into the Butler-Volmer law (Eq. (12)) gives the follow- 
ing relation between j, and q 

c,  + c, = c, (22) 
Here j, = i, L/FD,CP and j, = i, L/FD,C; are di- 
mensionless exchange current densities and c ,  = C,,/ 
Cy, (rn = 1, 2, 3). At the edge of the diffusion layer 
(x  = 1) the following boundary conditions are pre- 
scribed 

The current densities at the electrode surface ( x  = 0) 
are assumed to be given by the following Butler- 
Volmer laws: 

This relation and the definition of q written in the 
form V =  q + $(O), where $(O) is given in terms of j, 
by the solution (Eq. (ll)),  gives the current-voltage 
curve in parametric form (with q as a parameter). 

Fig. 1 shows the function j,(V) for a fixed (small) 
value of jp and different values of j,. All curves have a 
wave-like shape. The limiting current density jl, say, 
depends on j, as shown by the following formula 

For j, = 0, one recovers j, = 2, which, in the present 
scaling, is the limiting diffusion-migration current in 
the binary electrolyte. 

As can be seen from Fig. 1, the value of the half-wave 
potential is a monotonically increasing function of j,,. 

The total dimensional current density in the system 
under consideration is 

In these expressions, jf and j: are the dimensionless 
exchange current densities for the two reactions, a ,  
and a, are the corresponding transfer coefficients and 
A = 4; - is the difference of equilibrium potentials 
between the two reactions. In what follows, the sim- 
plest case with a ,  and a, are equal to 1/2 is consid- 
ered. 

Eqs. (19-22) can be easily integrated [6]. One finds 
the following expressions for the surface concentra- 
tions of cations c,(O), c,(O) and the electric potential 
drop in the diffusion layer $(O) - $(I): 

and the limiting total current density is 

From these results, it follows that the current-volt- 
age curve for the cation reduction depends, as ex- 
pected, on the current of the parallel reduction. The 
current-voltage curve for the latter reaction is, how- 
ever, independent of the former reaction. 

$(O) = ln(1 - j )  

where 
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From formula (26)  one finds the relation between the 
partial limiting current J :  and the current j,, which 
corresponds to the condition c l ( 0 )  = 0 [3,4]: 

Analogously, the condition c&O) = 0 leads to the 
relation between the partial limiting current jf! and the 
current j,: 

In terms of y = exp[ - V / 2 ]  the Butler-Volmer laws 
(24,  25) may be written as follows 

where t = exp[ - A / 2 ] .  From expression (31 1, one can 
solve for y whereby one obtains that 

A similar expression for y can be computed from 
expression (32).  Thus, expressions (32)  and (331, after 
substitution of c,(O) and c,(O), expressed in terms of j ,  
j, and j ,  from solutions (26)  and (281, give a relation 
between j, and j,, that does not, remarkably enough, 
depend on V and 1/40), By a simple numerical method, 
one can compute the "trajectories" j,( j,) in the j , ,  j ,  
plane, which depend on the values of parameters J : ' ,  

j;, c:, c; and t .  

5. Numerical simulation and discussion 

The resulting current-voltage curves for two paral- 
lel processes can be found through use of the following 
algorithm: for given values of parameters and some 
values of j, ,  the corresponding value of j 2  can, as 
pointed out at the end of previous section, be deter- 
mined. From expressions (27)  and (33)  one then finds 
the corresponding values of $ ( 0 )  and V .  In this way, 
one obtains curves j l ( V )  and j , (V)  and the total 
dimensionless current density j, 

Some numerical results are presented in Figs. 2-4. 
Fig. 2 shows the effective jl-j,  trajectories for dif- 

ferent values of the shift 3 between the equilibrium 

Y I .  
0 . 5  1 .  1 . 5  2 .  

Fig. 2. Functions j , (  j ? )  determined by Eqs. (31) and (32). cy = 0.7: 
c , i '  = 0.3: I: r = I :  2 :  r = 2: 3: r = 20: 4 :  t = 200: 5: function jj = jj( j l )  
determined by Eq.  (29): 6: function j $  = j i ( j , )  determined by Eq.  
(30).  

Fig. 3. Current-voltage curves for correlational exaltation of migra- 
tion currents. 1: curve j , ( V ) :  2: curve j z (V) :  c:=0.3: cq=0.7:  
1 ; '  = j y  = 0.0001: Dl = D:: r = 200. 1' and 2': curves j , ( V )  and j2( V )  
in the absence of exaltation of migration current. 3: total current 
density j( V 1. 

Fig. 1. Current-voltage curves for correlational exaltation of migra- 
tion currents. I :  curve j , ( V ) ;  2: curve j z ( V ) :  c: = 0.7: c; = 0.3; 
jl '  = j ;  = 0.0001: D ,  = Dz; r = 200. 1' and 2': curves j J V )  and j , (V) 
in the absence of exaltation of migration currents. 3: total current 
density j( V ). 

potentials of the reactions. All curves are located in- 
side the region limited by coordinate axes and curves 

I - .I j ;  = j ; ( j 2 )  and j, - j,( j, ) that are given by expressions 
( 2 9 )  and (30).  For values of t of the order of unity, i.e. 
for 4;' - $;'. these curves are found in the central part 
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of this region. When t >> 1, the first reaction ap- 
proaches its limiting current while the current of the 
second reaction is still small. For high potentials, both 
reactions approach their limiting currents which are 
jf = j: = 2. In this case, it is interesting to  note that two 
parallel processes become quasi-independent in the 
sense that their partial limiting currents become equal 
to the limiting currents for two independent reactions 
of cation reduction in two binary electrolytes. 

Figs. 3 and 4 show the current-voltage curves for 
the two parallel cation reduction processes. The dashed 
lines correspond to the current-voltage curves for two 
separate processes of cation reduction with the same 
concentrations of cations. One notices that, due to 
electrodiffusional conjugation of two processes, the 
limiting currents of both reactions increase. This fact 
reflects the mutual influence of the two processes. Due 
to this correlational exaltation of migration currents, 
the total limiting current, which is always equal to the 
sum of both partial limiting currents, can thus exceed 
substantially the sum of the limiting currents of two 
independent processes proceeding in solutions with an 
excess of supporting electrolyte. 

6. Conclusion 

Current-voltage curves for two types of kinetically 
independent parallel electrode reactions have been 
computed. The  results are based on exact solutions of 
the Nernst-Planck equations for electrodiffusion with 
boundary conditions given by Butler-Volmer laws. The 
one dimensional case of the Nernst diffusion layer 
model was used, which made it possible to find the 
solutions in closed analytical form. Computed polariza- 
tion curves show a clearly pronounced dependence of 
currents of parallel reactions as a result of mutual 
dependence of transport processes. This dependence is 
caused by conjugation of electromigration processes in 
the absence of supporting electrolyte. 
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