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Abstract 

The membrane system with a non-cylindrical pore has been considered. The internal surface of a pore has been approximated by a 
hyperboloid of rotation. A simple analytical expression for the steady state electric potential distribution has been found. It has 
been shown that the obtained expression appeared to be exact for two limiting cases of cylindrical pores of a small radius and 
non-cylindrical pores of a large radius. This gives an opportunity to describe pore evolution when both its size and its shape are 
being changed. An example of pore evolution in a bilayer lipid membrane is considered, and the different variants of evolution are 
discussed. 

1. Introduction 

While studying ion transport through homogeneous 
biological and artificial membranes under the influence 
of an electric field, one usually suggests that the trans- 
port is carried out by defects existing in the membrane, 
because the membrane itself is a dielectric and can be 
considered as an insulator. If the membrane does not 
include any additional macromolecules, for example 
protein, electrical characteristics of a membrane are 
mainly defined by the number of pores, their size and 
their shape. 

Analysing porous structures, one usually considers 
only the first two factors, while the shape is perceived 
to be given [I]. Comparatively narrow cylindrical pores, 
whose diameter is much less than their length, are 
usually studied. In this case the electrical field can be 
considered homogeneous over the entire volume of a 
pore, and errors connected with the change in the 
electric field near the ends of the cylinder can be 
neglected [I]. The other particular case is the case of 
wide, short pores. In the limit it becomes a problem on 
the passage of an electric current through a round hole 
in an unlimited non-conducting plane [2]. 

In ref. 3 pores of a somewhat more complicated 
shape were studied. It was suggested that a pore con- 
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sists of three pieces: the middle portion is a normal 
cylindrical pore; the two others are transition pieces, 
where the electric field changes linearly from the vol- 
ume value to a constant value inside the pore. Compar- 
ison of this rather simple theoretical model with the 
experimental data allows one to evaluate the size of 
each inlet piece. For pores in lipid membranes it varies 
from 15% to 33% of a membrane thickness. In addi- 
tion, the electrical resistance appeared to be extremely 
sensitive to the shape of a pore: a change in the 
transition site size of 10% results in resistance change 
of more than one order of magnitude. 

This means that the pore shape plays a decisive role, 
but not a minor role, as was suggested earlier. In 
addition, the assumption that there are inlet sites of a 
relatively small size is not correct, because those sites 
occupy up to 2/3 of the membrane thickness. That is 
why it is to be supposed that all the inner surface of a 
pore makes up just one curvilinear surface, narrowing 
as the centre of a membrane is approached. 

The most obvious approximation for a pore of such 
a shape is a toroidal surface. One assumed that the 
inner surface of a pore is part of a torus ("inner" part), 
which merges with the plane surfaces of a membrane. 
Calculation of the elastic energy for the toroidal sur- 
face is rather simple [4]. At the same time, the calcula- 
tion of the electric properties for a toroidal geometry is 
much more complicated. For calculation of the resis- 
tance in ref. 4 it was assumed that equipotential sur- 
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faces inside the pore are planes, parallel to the mem- 
brane surface. The current flow near the pore wall is 
parallel to its surface, which is why in this system the 
current is not perpendicular to the equipotential sur- 
faces (at least near the wall). This problem was over- 
come in ref. 5 where equipotential surfaces were cho- 
sen as a set of spherical fragments, perpendicular to 
the pore surface. This gave more accurate expressions 
for the resistance of the whole pore and for the tension 
of the electric field near walls. They also give the first 
approach to the problem of studying the pores of 
different shapes. They take into account that the pore 
can be constructed from a cylindrical part in the mid- 
dle, combined with the toroidal surfaces and the latter 
are merged with the plane surface of the membrane. 
At the same time the main model difficulty is still here. 
Both Nanavati et al. [4] and Pastushenko and Petrov [5] 
took some basic set of simple equipotential surfaces, 
while the consequent approach requires finding the 
potential distribution (and equipotential surfaces) from 
the solution of the Laplace equation with appropriate 
boundary conditions. Moreover, it can be easily shown 
that a set of spheres cannot be equipotential surfaces 
in a system with toroidal boundaries. 

In the present paper the distribution of the electric 
potential, and the strength and energy of the electric 
field for pores of more complicated shapes than cylin- 
drical are found by direct solution of the Laplace 
equation. It is shown that both the narrow cylindrical 
pore and the wide pore are particular cases of this 
shape and the obtained solution is exact in these two 
asymptotic cases. 

Fig. 1.  Three-dimensional sketch of the inner surface of the pore. 
The external surface membrane is not shown for simplicity. 

of the hyperboloid surface in a most logical way. In this 
case b 2  = roc. 

The problem of the electric field in such a system 
can be most conveniently solved in the oblate ellip- 
soidal coordinate system ( a ,  7).  The transition from 
cylindrical ( r ,  z )  to ellipsoidal system is carried out by 
the formulae [6] 

- 2 - 2 

2. Problem statement 

Let us consider the membrane 2h  in thickness, 
inside which there is an axially symmetrical pore. A 
three-dimensional sketch of the inner surface of the 
pore is shown in Fig. 1. The pore is axially symmetric, 
i.e. horizontal sections are circles of different radii. 
The section of minimal size (the middle section) is a 
circle of radius r,. All the axial sections of the pore are 
the same and are shown in Fig. 2. Let us approximate 
the inner surface of the pore by a hyperboloid of 
rotation: 

where r  and z are cylindrical coordinates with the 
origin in the centre of the above-described section and 
b is the parameter defining the shape of the pore. The 
value of c, the radius of the maximal curvature in the 
vicinity of the minimal section, describes the curvature 

r z - - = h2 
a 2 ( 1  - , r 2 )  a2T2 ( 3 )  

Here a = ( r ;  + roc) ' l2 /h  is the dimensionless focal 
distance: each fixed u defines cofocal ellipsoids ( a  2 0); 
each T defines cofocal hyperboloids (0 s T I 1). The 
condition 1 T 1 > T ,  corresponds to the interior of the 
pore, where 

T ,  = ( 1  + r , /c)  - ' I 2  = constant ( 4 )  
corresponds to the inner surface of the pore in the 
ellipsoidal coordinate system. 

Coordinates of the minimal section points are de- 
fined by the conditions u > 0, T 2 T,. Coordinates of 
the borderline points, in which the hyperboloid is con- 
jugate with the external plane surface of the mem- 
brane, are defined by conditions r  = R, I z I = h in the 
cylindrical coordinate system, and by the conditions 
a = a,, T = T ,  in ellipsoidal coordinates, where 

a,, = l / a 7 0 ,  

R = ha(1 - T ; y 2 ( l  + a y 2  ( 5 )  
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Fig. 2. Axial sections of a pore: (a)  typical pore; (b) narrow pore; (c) wide pore. 

We should notice that the condition a = a,, 1 T 1 2 To 
refers not to the plane circle being an extension of the 
membrane surface, but to the ellipsoid overhanging the 
plane z = h (see Fig. 2). 

Assume that the electric current value is not high 
and that it is possible to neglect concentration changes. 
We also neglect specific adsorption of ions on the 
surfaces. Under such assumptions in order to define 
the electrical current distribution in the system, one 
has to solve the Laplace equation for the potential @: 

a 4 = o  (6) 

with the boundary conditions being specified by zero 
flux of the current through the boundary between 
solution and dielectric 

(111) the small area between planes I and 11, re- 
stricted by the ellipsoidal boundary a = a, and the 
spherical boundary (9). 

The potential distribution in areas I and I1 will be 
found separately in what follows. It will be also shown 
that the contribution of area 111 can usually be ne- 
glected. 

In the first area the Laplace equation (6) and the 
boundary conditions (7) and (8) can be written as [6]: 

!:),=o 

and the conditions 

where @, is the potential drop inside the pore. The 
(7) potential distribution, satisfying eqn. (lo), is described 

by a simple relation: 

arctan a 
@ + @ , a t  z 2 + r 2 + m ,  z > h  @ = Q 1  

arctan a, 
@ +  -@,a t  z 2 + r 2 - + m ,  z >  -h (8) 

at infinity. In the second area (outside the pore) it is convenient 

It can be easily shown that because of symmetry of to introduce the spherical coordinate system (p, 61, 

the system, @(z, r )  = - @( -2, r),  the second of the "raised" to the height z = h about the origin: 

conditions (8) can be replaced by @ = 0 at z = 0 and it z = r cos 6 + h ,  p = r sin 6 
is enough to consider the upper part of the space, 

( 12) 

z 2 0, only. Then the relations (6)-(8) can be rewritten as 

3. Solution 

Let us divide the entire upper semispace into three 
areas (see Fig. 2(b)): (g)n,2 = 0, ( @ ) P = R  = @ I ,  ( @ ) P - .  = @o (13) 

(I) 0 I a 5 a,, T, I T I 1, the inner part of the pore; 
(11) the space area located over the plane z = h and From relations (13) it is easy to find the potential 

the semisphere distribution in this area: 
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The expression for the electric field strength E can 
be found from eqns. (11) and (14): 

E = (@, - @,) R / ~ ~  
in area I1 

The constant @, can be found from the condition of 
charge absence inside area 111, which is equivalent to 
the total flux through its two surfaces S ,  and S ,  (see 
Fig. 2(c)) being equal to zero: 

Writing down the expression (16) we took into ac- 
count that the corresponding surfaces u = u0 and p = R 
are equipotential surfaces, i.e. that the strength vector 
is always perpendicular to the surface at the point of 
integrate. Integrating eqn. (16) in the curvilinear coor- 
dinates (4), we can find the expression for @,: 

o1 = 
@ 0 

1 + ha(1 - r 0 ) / R  arctan uo (17) 

Substituting eqn. (17) into relations (11) and (1.5) we 
find the final expressions for the electric field potential 
and strength distributions inside the pore. 

The total current I through the pore is given by the 
relation 

where K is the specific electroconductivity of the solu- 
tion. 

Expressions (1.5) and (171, (11) and (141, and (18) 
describe the distributions of the electric field, the po- 
tential and the current in the axially symmetrical pore 
in an explicit form. These expressions can be used in 
different areas of the electrochemistry of porous bod- 
ies. 

4. Evolution of a pore in a bilayer lipid membrane 

As an example of such an application we will con- 
sider the evolution of pores in a model membrane 
under the influence of the electric field. The theory for 
cylindrical pores has been developed in refs. 1 and 
7-10]. The problems of pores evolution are discussed 
in a number of recent works (see ref. 11 for more 
detail). 

There are two forces that affect the evolution: sur- 
face tension on the boundary of a membrane and 
solution, tending to reduce the membrane surface, and 
the electric field pressure, tending to make pores wider. 
As the electric conductivity vector inside the liquid is 
parallel to the border of the phases, the electric field 
energy is calculated as an integral over the entire 
volume V: 

where E is the dielectric permeability of the liquid. 
One can show that in the case of a constant electric 

field energy this approach coincides with the more 
strict approach, where the electric field work is calcu- 

( a )  ( b )  
Fig. 3. Contour plot of surfaces of potential energy as a function of the size a and shape r,: (a) the energy We of the electric field; (b) the energy 
W, of the surface tension. \, direction of gradients; X ,  pass point. 
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lated from the Maxwell tensor of densities [8]. Evaluat- 
ing the integral (19) with relations (151, one obtains 

The contour plot ("map") of We as a function of two 
variables T, and a is presented in Fig. 3(a). The 
surface tension energy W, is proportional with the 
coefficient a to the change in the membrane surface 
area due to the occurrence of a pore: 

which is shown in Fig. 3(b). The total energy of the 
system is 

w =  we + w, (22) 

On the surface of the two parameters T, and a any 
pore is described by a point. Parameter 7, + 1 refers 
to a cylindrical pore, while 7, - 0 refers to a round 
hole in a thin plane; a - 0 indicates a "narrow" pore, 
while a - m indicates a wide pore. 

The shape of the surface W(a, T,) depends on di- 
mensional parameters involved in eqns. (20) and (21): 
membrane thickness h,  dielectric constant E ,  coeffi- 
cient of surface tension and applied potential differ- 
ence @,. Luckily, all these parameters are combined in 
the only dimensionless parameter 4 =  ha)'/^@, 
which can be considered as a dimensionless potential 
for a given membrane. For small potential difference 
4 << 1 we have We << W, and the shape of W(a, 7,) 

corresponds to Fig. 3(b). In the opposite case ($ >> 1) 
the shape of W(a, T,) corresponds to Fig. 3(a). In the 
intermediate cases some kind of combination of Figs. 
3(a) and 3(b) appears. 

Let us assume that at a certain moment a pore 
characterized by the parameters a and 7, has arisen. It 
then starts moving along the direction of the gradient 
of potential energy W. As far as the acceleration in 
each state is proportional to the gradient of W, it is 
possible to describe the changing dynamics of the pore 
as well. 

It is easy to see from Fig. 3(b) that in the case of 
P << 1 there are two different ways of evolution, de- 
pending on the location with respect to the broken line 
(which can be considered as a backbone): either de- 
creasing radius a - 0 (and at the same time the pore 
becomes more and more cylindrical) or unlimited in- 
creasing radius a - and decreasing 7, (the pore 

Fig. 4. Dependence of the total energy W on the pore size for 
approximately cylindrical pores ( r O  = 0.99) and dimensionless poten- 
tial difference cL = 3.6. 

looks like a hole in the infinite plane). This is a 
well-known fact for cylindrical pores. In the opposite 
case of a high voltage difference, ?P >> 1, only unlim- 
ited pore expansion is possible, because We decreases 
without limit in the directions a + m and T, + 1. 

At some intermediate values of $ a new possibility 
appears: the electric and elastic forces compensate 
each other and pores with some specific size and shape 
can exist permanently. In Fig. 4 the section of the 
surface W(a, 7,) corresponding to an approximately 
cylindrical pore is given. The minimum corresponding 
to a stationary position was originally found by Pas- 
tushenko and Chizmadzev [7]. 

One can assume that a stationary position can exist 
also on the boundary between two slopes (broken line 
in Fig. 3(b)). Of course, it is not a stable equilibrium, 
but the system can spend sufficient time in a such 
position for several experimental measurements which 
give us a possibility to describe the pore as quasi-sta- 
ble. The necessary condition of quasi-stability is an 
absence of the gradient, i.e. the point must be a "top" 
or "pass". It is easy to show that cylindrical pores 
cannot be quasi-stable because, at the point where the 
function W(a, 7, = 1) has a maximum, i.e, aW(a, T, = 

l)/aa = 0, a change in the shape, i.e. T,, must occur: 
aW(a, T, = l)/da # 0. Formally not more than one 
quasi-stable point labelled by X in fig. 3(b) exists in 
the system. However, in reality this point is placed in 
the middle of a "pass plateau", where W - constant. 
The system situated on the "plateau" will move down 
from it very slowly and also may be described by the 
term "quasi-stable pore". 

For example, the "pass plateau" included a segment 
a << 1, 0.1 < 7, < 0.4, which corresponds to an "invisi- 
ble" pore. It is obvious, that the current flowing through 
the pore that is characterized by the finite value T, and 
unlimitedly small value of the radius a will be compar- 
atively low, but electric forces cannot be neglected 
because the narrowest section of the pore also has a 
certain length, and that is why the strength and the 
pressure of the electric field can be significant. 
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One has to notice that all the above given specula- 
tions are strictly valid only when the external potential 
is supposed to be constant in time. However, in the 
case of a step-like external potential, formulae (201422) 
can also be considered valid. For example, under a 
certain potential value after the evolution, let an "in- 
visible" pore with certain a and T, appear. After a 
change in the potential value the state of this pore will 
cease to be stable and evolution will continue. It is 
obvious that, depending on the value of 4, one of the 
above-described cases is possible. 

It is important to stress that in any case of pore 
evolution with reasonably chosen initial parameters the 
system never does "climb" to the area a >> 1, T, = 1 
(indicating a wide pore of cylindrical shape) when the 
potential drop in area 111 of the pore (Fig. 2) cannot be 
neglected (we neglected it in all our calculations). 

5. Conclusion 

A simple analytical expression for the electric po- 
tential within a non-cylindrical axially symmetric pore 
has been obtained. The main restriction on the appli- 
cability of the results is that the shape of the pore has 
to make the potential drop in an intermediate region 
negligible. In the first approximation we can describe 
any errors by the ratio q = VII,/V, of volumes of 
regions I and 111. 

For the cylindrical pore with small radius r, << h the 
error of calculations is given by 77 = 2ro/3h << 1 (see 
also ref. 8). For the other limiting case when the pore 
radius is much larger than the membrane thickness, 
and the pore edge is rounded (7, << I), areas I1 and 111 
are removed to infinity and q =: T,. 

Therefore, the proposed model of an axially sym- 
metric pore bridges the previously developed models 
and thus can be used for describing complicated porous 
structures. 
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