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Abstract 

The conditions for the appearance of limiting currents in an electrochemical system in the cases of excess and no supporting 
electrolyte have been studied theoretically. It is shown that the partial currents of parallel reactions are interdependent not only 
because of their competition for common reactants but also because of the influence of the electric field on the transport processes 
of the charged reagents and reaction products. The system containing ions of three arbitrary charge numbers has been analyzed in 
detail for the cases of one, two and three parallel electrochemical reactions. Explicit expressions for partial and total limiting 
currents have been determined. A geometrical interpretation of the evolution of the system with changing potential difference is 
given. 

1. Introduction 

The study of transport processes in electrochemical 
systems occupies one of the central places in electro- 
chemical kinetics. Nernst [1] proposed subdividing the 
whole volume of the electrochemical cell into a bulk 
solution, where the convective motion takes place, and 
a thin boundary layer near the electrode surface, where 
the fluid motion is negligible owing to finite viscous 
forces. In the bulk solution convective transport of ions 
is much faster than the other types of transport, and 
hence uniform concentration can be assumed. Con- 
vection can be neglected in the thin boundary layer, 
which is known as the "Nernst layer" or "diffusion 
layer". For relatively large electrodes, compared with 
the thickness of the Nernst layer, it is possible to 
neglect transport in the lateral directions and hence 
the transport equations become one-dimensional. 

In the Nernst model the limiting current appears 
when the concentration of electroactive ions on the 
surface becomes negligible compared with the bulk 
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concentration. Of course, the Nernst layer model is the 
simplest possible and is severely restricted. For exam- 
ple, in this treatment the layer thickness is a phe- 
nomenological parameter. However, this model pro- 
vides a satisfactory explanation of all phenomena in 
which transport of reagents and reaction products plays 
a significant role. 

Later, Levich [2] found that ion transport near the 
surface of a rotating-disk electrode proceeds in the 
same way as in the Nernst layer. The disk electrode 
then became one of the most important tools in the 
study of electrochemical kinetics, and the concept of 
the Nernst layer was widely applied in theoretical 
investigations of ionic transport [3-7]. We shall use the 
disk electrode as the main example in this paper. Like 
the Nernst layer, the system with a spherically symmet- 
ric electrode can also be reduced to a one-dimensional 
problem. The results obtained in these two models are 
usually very similar [8-12]. One-dimensional steady- 
state transport is also the typical model used in investi- 
gations of transport through membranes [13-15]. All 
other systems must be solved in two or three dimen- 
sions which requires complicated numerical calcula- 
tions [16] (Thus only a relatively small number of 
possible situations can be investigated. Sometimes these 
are not sufficiently representative to derive the proper- 
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ties of the general solution which, however, can easily 
be understood from a simplified analytical solution 
[17].) 

The transport equations in the Nernst layer have a 
simple solution in some classic cases, such as the 
one-to-one binary electrolyte which appears in pro- 
cesses of metal electrodeposition. In the more general 
case of reduction-oxidation electrodes at least three 
kinds of ions with different charge numbers appear in 
the system (e.g. two electroactive species ~ n ~ '  and 
Mn4+ and electroinactive anions [13]). In this case the 
solution becomes much more complicated. We present 
the general solution for an arbitrary charge number 
because there is no other way of finding the simplest 
expression if at least one ion species in the system has 
a charge number different from that of the others. 

One of the main purposes of this work is to calcu- 
late the limiting current density for a single compli- 
cated electrochemical reaction. A reaction of this type 
often has one or two satellites, i.e. reactions occurring 
simultaneously with that under investigation. For ex- 
ample, anion reduction can take place in a number of 
ways (more than six different reduction reactions are 
possible for NO;, two or three of which proceed 
simultaneously). 

The rates of parallel reactions depend on each other 
for two main reasons: (a) the competition for reactants; 
(b) the migration force which depends on the potential 
distribution which, in turn, depends on the concentra- 
tion of all species in a self-consistent way. 

In Section 3 we discuss a system with a large excess 
of supporting electrolyte, where only condition (a) 
holds. A formal description of the general algorithm, 
which allows both effects to be taken into account is 
given in Section 4. This algorithm gives a finite but 
rather complicated solution for the system with three 
different types of ions (Sections 5 and 6). The mathe- 
matical details of the solutions are given in the appen- 
dices. A qualitative description of possible ways of 
reaching a limit for the cases of one and two reactions 
is given in Section 7. Readers who are interested in 
examples of real systems are referred to the literature 
cited, where particular cases are discussed. 

2. Statement of the problem 

Let us consider an electrochemical system compris- 
ing cations with the charge number z,( A:.+, A$.+, . . . ), 
cations with the charge number zb( B;b +, Bjb+, . . . ) 
and anions R;r- ,  R 2 -  with the charge number 2,. 

*The  case of an electrochemical system comprising anions with 
different charge numbers z ,  and zb and cations with the charge 
number z ,  can be solved in a similar way. 

Several electrochemical reactions take place on the 
electrode surface, each of which can be presented in 
the following form: 

where S, are neutral substances which take part in the 
electrochemical reaction, m, is the number of elec- 
trons transferred in the kth reaction, and aki, b,,, rki 
and s,, are the stoichiometric coefficients. According 
to the generally accepted rules we assume that stoi- 
chiometric coefficients are positive for reactants, nega- 
tive for reaction products and zero for substances not 
taking part in the reaction of interest [18]. 

Consider stationary transport in the Nernst diffusion 
layer. The Nernst-Planck equation for the ith ion with 
charge z,(a = a, b, r) is 

where D,, and c,, are the diffusion coefficient and 
concentration of ion ai (the index (Y = a, b, r corre- 
sponds to the different charge numbers, and the index 
i indicates different substances with the same charge 
number), Iαi is the current density transported by this 
ion, F is the Faraday constant, 4 is the electrical 
potential, R is the gas constant, T is the absolute 
temperature and y is the coordinate directed from the 
electrode surface into the solution. The Einstein rela- 
tion for ion mobility (which is strictly valid for dilute 
solutions) has been assumed. The activity coefficients 
were taken as unity and the diffusion layer was as- 
sumed to be the same thickness for all ions. 

Equation (2) should be supplemented with the equa- 
tion defining the electric potential, i.e. the Poisson 
equation. However, in the case of underlimiting and 
limiting currents the Poisson equation can be replaced 
with rather good accuracy by the condition of local 
electroneutrality: 

The electroneutrality condition is satisfied everywhere 
except in close proximity to the electrode in the case 
when all reactant concentrations become small, i.e. in 
the regime of the limiting current. However, it has 
been shown [2,19] that this has a negligible effect in the 
regime of the limiting current and requires only a small 
correction in the "regime of overlimiting currents". 
Therefore eqn. (3) is applied to the whole volume of 
the diffusion layer. The boundary conditions for eqns. 
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(2) and (3) at y = L (the boundary between the diffu- 
sion layer and the bulk solution) are 

c,,( y = L )  = c0 
,I 4 ( y = L ) = 4 0  (4) 

It is possible to find the distribution of concentrations 
c,,(y) and potential + ( y )  from eqns. (2) and (3) with 
boundary conditions (4), but these functions depend on 
Iαi as parameters. One of the conditions for defining 
parameters Iαi is 

where I is the integral current density passing through 
the system. Expression (5) can be transformed into 

CI, = I 
k 

(6) 

where I, is the current density produced in the kth 
electrochemical reaction. It is easy to obtain the rela- 
tionship between Ik and Iαi  from the stoichiometric 
correlations (1) [20]: 

Therefore the number of unknown parameters in eqns. 
(2)-(4) is defined by the number of electrochemical 
reactions proceeding simultaneously. If the integral 
current value is known, the number of unknown pa- 
rameters is reduced to one. 

3. Limiting diffusion currents 

The following assumption is often used in the deter- 
mination of the partial currents I,: the slowest stage of 
one (or several) electrode reaction(s) is the diffusion 
transport of reactants to the electrode, and the elec- 
trode reaction proceeds so fast that the concentration 
of the reactant at the electrode becomes very small. In 
the case of excess supporting electrolyte, when the 
electric field strength is low, it is possible to neglect the 
migration term in (2) and to determine the limiting 
value I; of the current of the kth reaction: 

This minimum value is taken only among the reactants, 
i.e. among the substances with positive stoichiometric 
coefficients (aki, b,,, rkl ,  ski > 0). 

Expression (8) is valid for one reaction only or for 
several parallel reactions with no common reactants. 
Generally, when one or more reactants are common to 

several reactions, it is possible to assume that parallel 
reactions reach the limiting regime consecutively (one 
by one). It is convenient to arrange reactions (1) in 
order of increasing half-wave potentials. Then the lim- 
iting current I: for the only electrode reaction with the 
index k = 1 can be determined from expression (8). 
The value of the current  Iαi transported by each of the 
reactants in the first reaction can be determined by 
substituting I,! into eqn. (7). The limiting current of the 
second reaction can also be found from eqn. (8), with 
all the terms reduced by the corresponding values of 
the currents consumed in the first reaction: 

Equation (9) is valid only if all the terms on the 
right-hand side are positive. If this condition is not 
satisfied, this reaction is impossible because of the 
absence of free accessible reactants. In other words, 
the reaction cannot proceed if it requires a reactant 
whose transport is already limited because of the previ- 
ous electrode reaction. 

After I: has been found, application of eqn. (8) is 
repeated until all the I; are determined. Let us once 
more emphasize the fact that the values of I; depend 
on the order of the half-wave potentials of all the 
reactions. This means that the integral limiting current 
Il also depends on the values of half-wave potentials of 
all the reactions (1) when they reach their limiting 
diffusion regimes. The limiting current I l equals the 
sum of the limiting diffusion currents of the individual 
reactions only for reactionally independent electro- 
chemical systems where each substance either partici- 
pates in no more than one electrochemical reaction or 
is in excess. 

4. Limiting diffusion-migration currents 

A much more complex interaction of the electro- 
chemical reactions takes place in the absence of sup- 
porting electrolyte. The following particular case of the 
electrochemical system (1) has been considered in ref. 
21: 

A']++ zle--+ A(,, B'I+ + z2e--+ B,,, ( 10) 

It includes the parallel precipitation of two species of 
cations from the solution provided that anions are 
electroinactive. Let us consider the case when the 
current produced by the first reaction reaches its limit- 
ing value I: under a certain potential difference. As 
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the potential difference increases, the current of the 
second reaction gradually increases. Consequently, the 
potential distribution in the diffusion layer is changing. 
It causes a change in the migration term in expression 
(3) for the first cation species. Therefore we find that 
the limiting current of the first reaction is a function of 
the second reaction current, I: = I:( I2), and the totally 
limiting current is described by the expression I l = 

I;( I;) + 1;. 
In the general case of electrochemical system (1), 

the limiting current of a particular reaction must be 
considered a function of the currents of all the other 
electrode reactions that have not yet reached their 
limiting value. If N reactions (1) are arranged in the 
order in which they reach the limiting regime, the 
expression for the integral current in the system (under 
the condition that the kth reaction has reached the 
limiting regime) becomes 

+ q z ; , .  . . , I;, I ,+,, .  . . , IN) + . . . + I ; ( I ~ + ~ ,  . . . , IN) 

In order to find the value of the current I from (11) it 
is necessary to know the values Ik+1 , . . . , IN,, and this 
requires information about the kinetics of the elec- 
trode reactions k + 1, .  . . , N. 

However, for an approximate solution of the prob- 
lem it is possible to assume that the potentials of all 
reactions are significantly different and the currents of 
all reactions that have not reached the limiting regime 
are equal to zero: I,+, = . . . = IN = 0. In this case the 
solution procedure is similar to that in Section 3. 
However, the comparatively simple expressions (8) and 
(9) for the limiting current I; must be replaced by the 
following algorithm: 

(1) Assuming I,+ , = . . . = IN = 0, find the distribu- 
tion of concentrations of all the components in the 
diffusion layer as functions of k parameters I1, . . . , Ik. 

(2) At y = 0, set the concentrations of those reac- 
tants which are limiting for reactions 1,.  . . , k - 1 equal 
to zero. This results in a system of (k  - 1) equations 
for the unknown parameters I1,  . . . , Ik. 

(3) Solve this system of equations and express 
Il, . . . , I;-, as a function of the single parameter Ik. 

(4) Substitute I;(I,), . . . , I;- ,( I,), I, into the ex- 
pressions for the concentrations in the diffusion layer 
and find expressions for the concentrations of all the 
reactants at y = 0 as a function of I,. 

( 5 )  Determine the value of Ik, which corresponds to 
zero concentration of one component at the electrode 
while the others are not negative. This value of Ik is 
the limiting value. 

Usually, this value of Ik is the only one that is a 
minimum among all possible values defined by the 
conditions cl(Ik,  y = 0) = 0. However, this rule is not 
always fulfilled. An example of an electrochemical 
system with two parallel reactions where a double 
limiting current (when the concentrations of the reac- 
tants for each reaction become equal to zero near the 
electrode) can have three different values is given in 
ref. 22. This case can be explained in terms of the 
appearance of multiply connected domains of possible 
current values Ik and is discussed in more detail at the 
end of Section 7. 

5. Concentration distribution in the diffusion layer 

As already mentioned above, the concentration dis- 
tribution in the diffusion layer can be obtained by 
solving eqns. (2) and (3) with the boundary conditions 
(4). The best way of solving this problem is to introduce 
a new independent coordinate +, the dimensionless 
potential, using the technique described in detail in ref. 
23. 

The main aim of this method is to find the inverse 
function y = y(+) instead of determining the potential 
distribution + as a function of the coordinate y. Simi- 
larly, the concentrations can also be found as functions 
of the dimensionless potential. This procedure results 
in the following expression for cai in parametrical 
form: 

where new designations are introduced for dimension- 
less currents transported by ions of the same charge 

for the integral concentration 

and for the dimensionless electrical potential 

The function f(+,  λ', λ") included in eqns. (12) and 
(13) is just a linear combination of two exponential 
functions of the potential in the form exp[(A1 k A")+]. 
The procedures for deriving expressions (12) and (13) 
and the explicit form of the function f(+, λ',  λ") are 
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given in Appendix A. It should be noted here that the 
function f is dimensionless and depends only on the 
ratio of the boundary concentrations c,, and the ratio 
of currents j, as parameters, and not on the currents 
themselves. 

Equating the right-hand sides of (12) in turn to zero, 
we can find values of the potentials $, that correspond 
to zero concentrations. After determining the value of 
the potential using the algorithm given in Section 4, 
the dimensionless value of the limiting current j, = 

f($,,λ ', λ") can be derived from (13) and then, using 
the stoichiometric relations, the values of all other 
currents can be obtained. 

Unfortunately, the numerical solution of a transcen- 
dental equation is necessary for calculating the poten- 
tial $,, because the right-hand side of (12) is the sum 
of three exponential functions with different expo- 
nents. 

In order to investigate the main properties of the 
system without performing numerical calculations, we 
shall discuss in detail an important case of a system 
containing three ion species with different charges in 
which each species reduces (or oxidizes) on the elec- 
trode independently of all others. We then discuss the 
behavior of a three-ion system with arbitrary stoi- 
chiometry. The analytical solution is obtained for an- 
other specific case when the total flow of ions with a 
particular charge is zero. Finally, the general features 
of the problem are discussed. 

6. System containing three ion species with different 
charge numbers 

We consider the case when three kinetically inde- 
pendent electrochemical reactions take place on the 
electrode and exactly one ion species takes part in each 
of them. Let us assume that ion species A'?+ (for 
simplicity A) takes part in the first reaction, ion species 
Bzh+ (for simplicity B) takes part in the second reac- 
tion and ion species RZr- (R) takes part in the third 
reaction. In this case the concentration distribution 
(12) is given by (see Appendix A) 

C, = C: e A ' * [ ~ ~ ~ h ( ~ l l $ )  + PI s inh (~"$ ) ]  (17) 

c, = c: e"* [cosh( A"$) + p, s inh (~"$ ) ]  ( 18) 

C r  = ( ~ a ~ a  + ~ b ~ b ) / ' r  ( 19) 

Equating the right-hand side of eqn. (17) to zero, we 
find the value of the potential $, which relates to the 
limiting current produced by the component of species 
A'.+: 4, = 1/A" arccoth P, .  Introducing $, into (13) at 
y = 0 we find the dimensionless limiting current of the 
first reaction: 

ja = f(l/A1' arccoth P I λ', λ") (20) 

Fig. 1. Surfaces corresponding to the limiting regimes of the electro- 
chemical system for z ,  = 2, z, = 1 and k = 0.3. 

An expression for the limiting current corresponding to 
cation species B can be obtained from eqn. (20) by 
interchanging PI and p2 (the definitions of constants 
 λ',  λ", k ,  p, and p, are given in Appendix A). 

The condition for the limiting current for anions has 
a completely different form: 

This is why, in accordance with the condition of elec- 
troneutrality, as soon as the anion concentration ap- 
proaches zero, the concentrations of both cations also 
approach zero. Therefore a totally limiting current is 
attained in this system. In this case the potential drop 
in the diffusion layer formally becomes unlimited. In 
the physical sense this means that the potential drop in 
the diffusion layer is comparable with that in the 
double layer in the range of high values of potential 
difference between the working electrode and a test 
electrode in the bulk solution. The conditions stipulat- 
ing the limiting regimes of the electrochemical system 
under discussion are plotted in three-dimensional space 
(j,, j,, j r )  in Fig. 1. We now consider the picture 
obtained qualitatively (a strict analytical consideration 
is given in Appendix B). An inclined plane III is 
situated in the space region where j,, j, < 0 and char- 
acterized by expression (21). When the flow values j,, 
jb, jr correspond to the points on this plane, concentra- 
tions of all the components approach zero near the 
electrode. In a certain sense it is possible to designate 
it a totally limiting current for all j,, j, < 0. The 
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straight line given by expressions 

lying in the plane (21) and continuing into the area of 
positive j, and J, should also be noted. This straight 
line is the boundary between two curvilinear surfaces 
corresponding to the limiting regimes for cations of 
species A (surface I) and species B (surface 11). Sur- 
faces I and II both have variable curvature and become 
steeper as ja + - and j, + - x respectively. The 
junction point of the three surfaces has the following 

( c )  
Fig. 2. Sections of the surfaces shown in Fig. 1. The location of 
sections a-c is indicated on the scheme. 

Fig. 3. Boundaries between different regions characterizing the be- 
havior of the system. 

The boundary between surfaces III and I is half the 
straight line beginning at the junction point and lying 
in the surface j, = 0. The boundary between surfaces 
II and III is much more complicated. This curve is a 
tangent to the straight line (23) at the junction point, 
then approaches the plane j1  = 0 tangentially and fi- 
nally continues along the half-straight line analogously 
to the boundary between III and I. 

Some axial sections of the surfaces I, II and III are 
shown in Fig. 2. It should be noted that the results 
shown in Figs. 1 and 2 are obtained from precise 
analytical expressions, i.e. the coordinate of any point 
can be obtained with the aid of a pocket calculator. 

Each domain of surfaces I-III is "projected" onto 
the corresponding area of the surface (v, 0)  (see Figs. 3 
and 4 and Appendix B). The simplifying factor is that 
the lines of the changing regime (where the concentra- 
tions are expressed by trigonometrical and hyperbolic 
functions) do not affect the form of surfaces I and II 
and hence they are not plotted in Fig. 4. 

-10.1 

Fig. 4. "Map" for the construction of the surface of limiting current 
regimes. 
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7. Discussion 

The different types of system behavior depending on 
the sequence of standard potentials of the reactions 
can easily be described qualitatively using the figures 
given above. 

For example, let us assume that the reduction reac- 
tion of the first cation species begins with an increase 
in potential difference. This corresponds to movement 
of the point (j,, jb, j,) from the origin along the axis 
ja. At  a particular value of the potential this point 
reaches surface I, i.e. the system becomes limited by 
cations of the first species. If the reduction reaction of 
the second cation species then "switches on", the point 
characterizing the state of the system stays on surface I 
and at the same time begin to move along the curve on 
the plane j, = 0 towards the straight line (22) that 
divides surfaces I and II. After the anion reaction is 
"switched on", this point can move along the straight 
line (22). To determine the final state of the system it 
is necessary to define the correlation between the 
kinetics of three electrode reactions. If the reaction 
potentials do not differ significantly, the trajectory of 
the point on the curves deviates to some extent from 
that described above. 

If the anion reaction "switches on" after the reduc- 
tion reaction of cation species 1, the point (j,, j,, j,) 
moves along the line of intersection of the vertical 
plane j, = 0 and surface 1 towards surface 111, and 
then continues along the straight line separating sur- 
faces II and III. 

The phenomenon of the increase in the reduction 
limiting current of the cations when anion reduction 
appears was first described by Heyrovsky and Bures 
[24] and denoted "exaltation of the migration current". 
Calculations of the line separating surfaces 11 and III 
have been performed by Newman [6]. The solutions for 
the system of transport equations in the case of two 
parallel cation reduction reactions (for the range where 
ja, jb > 0) are also given in the literature [21]. Our 
solution allows us to calculate values of limiting diffu- 
sion-migration currents for an arbitrary three-ion elec- 
trochemical reaction. Evidently, the ion fluxes (of both 
products and reagents) of a given electrochemical reac- 
tion are proportional to each other with coefficients 
defined by stoichiometric coefficients. The solution 
given above depends only on the ratio of the fluxes. 
Therefore it is possible to calculate the values of one 
or two limiting diffusion-migration currents (depend- 
ing on the stoichiometry of the reaction). 

The physical meaning of the existence of two differ- 
ent limiting currents for the same electrochemical reac- 
tion (1) is evident. The reaction can proceed in two 
different directions (cathodic or anodic). Therefore the 

process can be limited by different ion species. If the 
reactants are not all present in excess (e.g. H,O), a 
limiting current is obviously impossible for this type of 
reaction (in the region ja, j,, jr > 0). 

A geometrical interpretation can also be given. The 
definite stoichiometric coefficient makes it possible to 
construct a straight line in the space (j,, jb, j,) which 
passes through the origin and comprises the points 
corresponding to physically possible states of the sys- 
tem. If this line intersects two surfaces, the maximum 
rates of both reactions (cathodic and anodic) are sub- 
ject to restrictions. However, if the line intersects only 
one surface, one of the reactions can generally proceed 
at an unlimited rate (electrodissolution of the metal). 

The most useful results obtained from the analysis 
of limiting current surfaces are those for the common 
case of two parallel electrochemical reactions. Each of 
the reactions is represented by a separate straight line 
in the space (j,, jb, j,) (a set of covectors from the 
origin in terms of analytical geometry). The superposi- 
tion of two reactions corresponds to the superposition 
of their vectors. As a result, the physically available 
area is the whole plane "stretched" on the vectors. The 
only boundaries of this area are the curves of intersec- 
tion of the plane and the limiting current surfaces. 

For example, let us assume that during the first 
reaction that reaches a limiting current, ions of species 
1 are consumed. Then the system can evolve in three 
different ways. 

(1) Owing to the stoichiometry of the two reactions, 
the total flux of ions of species 2 is directed towards 
the electrode. Then the system moves towards the state 
of a completely limiting current (points of intersection 
of "the straight line of limiting current" (22) and the 
physically realized plane) [25]. This state of limitation 
satisfies both generally accepted criteria of the limiting 
current: (a) the integral current flowing in the system 
achieves its maximum value; (b) concentrations of all 
reacting components approach zero. 

(2) The cation flux (from one side) and the anion 
flux (from the other) are in opposite directions. Then 
the two electrochemical reactions "help" each other. 
Even when all concentrations near the electrode ap- 
proach zero, the electric current can increase owing to 
transformation of the electric field in the diffusion 
layer. 

(3) Fluxes of cations of different species are in 
opposite directions, and the cations produced on the 
electrode (e.g. species A) force out the cations of the 
other species when the potential difference increases. 
The result is that the reaction consuming cation species 
B has to correlate with the reaction which produces 
them. In this case we are dealing with an integral 
electrochemical reaction where the intermediate (ions 
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of species B) should be excluded. If ions of species B 
are not produced at all, the reaction under considera- 
tion is completely suppressed. It should be emphasized 
that this suppression is due to diffusion-migration 
restrictions for ion transport and not to the reactional 
restrictions. In. the absence of the second (hindering) 
reaction, this reaction could proceed at a significant 
rate. Such a limitation of one reaction by the other 
owing to the diffusion-migration kinetics was first de- 
scribed by Sokirko and Kharkats [25]. 

Reactions which proceed in only one direction, ei- 
ther cathodic or anodic, are frequently encountered in 
electrochemistry. In this case another restriction ap- 
pears. First, the plane corresponding to two other 
reactions should be identified in the current space (j,, 
j,, j,). One of the semi-spaces formed in this way is 
chosen to correspond to one direction of the reaction. 
If the second reaction also proceeds only in one direc- 
tion, it is necessary to impose similar restrictions. For 
example, if only the cation reduction reactions take 
place on the electrode (precipitation of metal alloys on 
an electrode which is not consumed) only a quarter of 
the space, namely the region j1, j, > 0, should be left. 
These supplementary planes also impose certain re- 
strictions on the evolution of the system, depending on 
potential difference. However, in contrast with the 
limiting current surfaces, if a certain point (j,, j,, j,) 
reaches this plane it indicates only the absence of the 
corresponding reaction [26]. The easier case, when 
there are only two parallel reactions in the electro- 
chemical system and the restricting planes degenerate 
into restricting semi-straight lines, has been studied 
earlier [22]. 

We have discussed the cases of one, two and three 
parallel reactions. These results can be generalized to 
the case of four or more parallel reactions. In fact, the 
additional fourth reaction differs from the simple su- 
perposition of the first three reactions only in the 
presence of neutral reactants S,,. Therefore the loca- 
tion of the characterizing point at the onset of the 
fourth and subsequent reactions will not change in 
principle. It will still be located on the straight line 
corresponding to the limiting current or on the other 
restricting surface. This means that new reactions would 
probably replace other reactions (suppressing them), 
i.e. there would be no significant changes in current 
values. 

Generalization to the case of a system with ions of 
more than three types is both much more interesting 
and much more difficult. For example, assume that 
there are anions of two different species in the system 
(with the same charge). All the restrictions discussed 
above for the region of possible current values (j,, j,, 
j,) apply in this case. Moreover, new restrictions ap- 

pear associated with the fact that the concentration of 
a certain anion species (not just their sum) may be- 
come zero on the electrode. These conditions result in 
the appearance of additional surfaces (in the case of 
three reactions) or curves (in the case of two reactions) 
which can have rather complicated shapes. 

In particular, it is possible that when all necessary 
restrictions have been taken into account, the remain- 
ing space of possible values (j,, j,, j,) will consist of 
several unconnected domains. Gradual transition from 
one domain to another, i.e. under slow changes in the 
potential, is impossible. Transitions can only occur 
from a non-stationary state or by "revolutionary" 
jumps, i.e. by a rapid change in current or transforma- 
tion of the concentration profile under small potential 
changes. Therefore, the system described above pro- 
vides an example of electrochemical instability. 

Unfortunately, as mentioned in Section 5, problems 
of limiting currents in such systems must be solved 
numerically. In connection with this, we consider two 
studies [22,26] in which parallel precipitation of copper 
in an acid solution and the reduction of NO, ions to 
NO; ions were considered. In this case the integral 
flux of anions towards the electrode is zero, and it is 
possible to calculate the surface of the limiting current 
analytically, using the fact that the NO; concentration 
approaches zero at the electrode (the case of two 
parallel electrochemical reactions was considered in 
ref. 22 and the case of three reactions was considered 
in ref. 26). 

If a homogeneous chemical reaction takes place 
inside the volume of the transport zone, the region of 
possible current values is expanded. The effect of the 
possible influence of the recombination of H f  and 
OH-  on copper reduction has been investigated [27], 
and it was shown that the physically realized area of 
current values consists of two or even three uncon- 
nected domains. 

8. Conclusion 

The conditions for the appearance of limiting trans- 
port currents in an electrochemical system with ions of 
three arbitrary charges have been studied theoretically. 
The majority of the experimental systems include ions 
with two or three different charge numbers. Therefore 
the results presented in this work, together with results 
obtained earlier for a system, with ions of two different 
charges [28], can be used to give full descriptions of 
existing real system. The cases of both excess and no 
supporting electrolyte were investigated. In the first 
case an algorithm for the determination of a step-like 
current-voltage curve was proposed. In the second 
case, i.e. in the presence of both diffusion and migra- 



tion transport in the system, the distribution of concen- 
trations of all components inside the diffusion layer 
was found, and the general analytical solution for limit- 
ing currents in a system containing three different ion 
species with different charges was given. Cases of one. 
two and three parallel electrochemical reactions with 
arbitrary stoichiometry were discussed in detail. I t  was 
shown that the region of physically realized currents is 
restricted by surfaces (curves in the case of two reac- 
tions) of various origins: 

(a) two curvilinear surfaces and one plane corre- 
spond to zero concentrations of cations of either the 
first or second species and the concentration of anions 
in proximity to the electrode; 

(b) planes (passing the origin) if the reaction (reac- 
tions) can proceed in only one direction; 

(c) curvilinear surfaces (curves) of a rather compli- 
cated shape if there are more than three ion species in 
the system. 
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Nomenclature 

AZd+(A) anion species ( i  = 1, 2 , .  . . ) with charge num- 
ber z ,  

a~ I stoichiometric coefficients of AS,' in the X t h  
reaction 

BZh+(B) cation species ( i  = 1, 2.. . . ) with charge num- 
ber z ,  
stoichiometric coefficients of B,l,' in the k th 
reaction 
integral concentration in the bulk solution 
concentrations of the ion species a i  (α  = a, b. 
r; i =  1, 2, . . . )  
concentrations of ions species a i  in the bulk 
solution 
dimensionless total concentration of cation 
species AS.+ 
dimensionless total concentration of cation 
species B:h+ 
dimensionless total anion concentration 
diffusion coefficients of the ion species ar 
( a = a ,  b , r ;  i =  1, 2 , . . .  ) 
Faraday constant 
auxiliary function 
integral current density 
integral limiting current density 
current density produced in the kth electro- 
chemical reaction 
limit value of Ik 

current density transported by ion species a i  
( a = a . b . r ; i = l , 2  , . . .  ) 
dimensionless current transported by ion a 
( a  = a, b, r)  
dimensionless bulk concentration 
diffusion layer thickness 
number of electrons transferred in the k th 
reaction 
gas constant 
anion species ( i  = 1 ,  2,.  . . ) 
stoichiornetric coefficients of R f r  in the k th 
reaction 
neutral substances ( i  = 1,  2 , .  . . ) 
stoichiometric coefficient of S, in the kth 
reaction 
absolute temperature 
combinations of charge number 
dimensionless coordinate 
coordinate 
charge numbers of cation species 
charge numbers of anion species 
normalized charge numbers of cation species 
auxiliary dimensionless variables 
auxiliary dimensionless variable 
characteristic curve on the plane ( v ,  0)  ( I  = 1,  
2 , . . . )  
roots of the characteristic equation 
auxiliary dimensionless variable 
electric potential 
electric potential on the boundary 
dimensionless potential 
value of th corresponding to zero concentra- 
tion 
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Appendix A 

The distributions of concentration and potential in 
the diffusion layer in the case when the currents trans- 
ported by each of the components are known are 
determined in this appendix. 

Summing eqn. (2) for ions of the same charge num- 
ber, we obtain 

where, in addition to definitions (14), the following 
new dimensionless functions are introduced: 

C, = Ccai/cO C* = Ccb l / cO  
i i 

C, = ~ c r i / c 0  k = C c ~ , / c O z l  
i i 

(A4) 

X = ~ / L  z1=za / l z r I / z2=zb / l z r I  

The condition of electroneutrality (3) in dimensionless 
form becomes 

zlcl  + z,c, = C, (A5) 

It should be noted, that the system of equations (A1)- 
(A3) and (A5) with the boundary conditions (A6) de- 
scribe parallel reduction of two cation species and of 
one anion species. Therefore the full problem (2)-(4) is 
reduced to an easier form. 

Multiplying eqn. (Al )  by z , ,  eqn. (A2) by z2 and 
eqn. (A3) by - 1, summing them and taking (A5) into 
account, we obtain 

where the following variables are introduced for sim- 
plicity: 

Multiplying (Al )  and (A2) by dx/d& and using the 
correlation 

dc  d x  dc  
- -- - - 

d x  d* d +  

we obtain, taking (A7) into account, 

It is not necessary to write down the equation for c, 
because it depends functionally on (A9) and (A7). 
Equations (A9) form a set of ordinary first-order linear 
differential equations. The characteristic equation of 
this system is 

oh2 - ( u ,  + u , ~  - 02, -z2e)A 

+ (ez ,z ,  - u ,z2  - ~ u ~ z , )  = o (A10)  

After some transformation, the discriminant ∆ of the 
quadratic equation (A10) can be expressed as follows: 

+ ( u ,  + U U , ) ~  ( A l l )  

The roots A,, A ,  of the characteristic equation (A10) 
can be presented in the following form: 

 λ 1,2 =A' fλ"                     (A12) 

where 
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After taking the boundary conditions (A6) into ac- 
count, the distribution of concentrations c,($) and 
c,($) can be expressed as 

k 
c , ($)  = -eX*(cosh A"$ + pl sinh A"$) 

Z l  

1 - k  (A14) 
%($)  = - eX*(cosh A"$ + p2 sinh A",) 

2 2  

The unknown constants p1 and p2 are found by intro- 
ducing (A14) into eqns. (A9) and comparing the terms 
at cosh A"$ (or sinh A"$): 

i"' U ?  Z ,  1 - k  
K-z ' - "++- - -  

'3 z, k 

u,v z, k (A15) 

'3 Z ,  1 - k  

Introducing (A14) into (A7) and integrating, we obtain 
the relationship between the dimensionless coordinates 
x  and $: 

x =  1 - f ($ ,   λ', A1')/j, (A16) 
where the function f($, λ', λ") is defined as 

f ( * ,  A', λ") 

- - 
1 

( 2 0 ~ ' ) '  - A 

x ( [ k ( z 1 +  1) + (1 - k ) ( z , +  I ) ]  

x {A' - [ - e"*(hf cosh A"$ - λ" sinh A'$)]} 

X [-A" - e**(l t  sinh A"Q - A'' cosh A",)]) (A17) 

If ∆ < 0, the characteristic roots λ1, A >  of the equation 
become complex, but this does not affect the existence 
of real solutions for concentrations and potentials. 
Indeed, the only imaginary variable λ" is included in 
(A14) in the combinations cosh A"$ and sinh A"$/AU, 
which can be replaced by the real functions cos(iAU$) 
and sin(iA"$)/iAU. A similar transformation can be 
performed for expression (A17). 

Equation (2) for the distribution of a component 
with charge number z, can be expressed as follows 
after replacing the independent variable: 
dc,, z,c,, I,,L d x  -+-- 
d* Iz,l FD,, d* 

This is an ordinary linear differential equation of first 
order in cαi. It can be solved by varying the integration 
constant. The final result is 

It should be emphasized that expressions (A16) and 
(A19) present an explicit (although rather complex) 
parametric dependence of concentration profile on the 
coordinate. 

Appendix B 

The conditions for the validity of eqns. (20) and (21) 
are given in this appendix. In addition, we consider the 
case z ,  < z, (the case z1 = Z, can be obtained by 
applying the limit transition z 1  + 2,). 

The first obvious consideration is that the system 
can reach the limiting current state relative to any 
component cu only if its current is directed towards the 
electrode: ja > 0. The solution depends only on the 
ratio of dimensionless currents jα, i.e. on parameters v 
and θ. Therefore it is convenient to carry out the 
analysis on the plane ( v ,  0). In that coordinate system 
all boundaries between different regions characterizing 
the system behaviour are expressed by simple curves 
(parabolas and straight lines), which are designated 
'3, = '3,(v) (Fig. 3). 

One of the most important curves is the parabola 

where the discriminant A of the characteristic equation 
(A10) approaches zero. This parabola is tangential to 
the axis v = O at θ = u , / ( z l  -2,)  and the axis 0 = 0 at 
v = - u ,/u, .  As was shown, the concentration distribu- 
tion is expressed by trigonometric functions of the 
potential inside the parabola O,,, and by hyperbolic 
functions outside it. 

It is necessary for the existence of limiting currents 
produced by cation species A that $,, = - 1/A" arccoth 
p,  should be real, i.e. | PI | > 1 outside the parabola. It 
can be shown by direct calculation that the condition 

| p,  | = 1 is equivalent to the condition that the point 
(v, '3) should lie on the straight line 

The straight line '3,(v) is tangential to the upper part of 
the parabola 0 ,  at the point with the coordinate v = v": 

Let us consider the positive semi-plane v > 0. In the 
region above the line O, ,  the condition | p,  I > 1, | PI I 



< 1 is valid, and so the limiting current may be pro- 
duced by the components of the second species but not 
of the first species. Under the line 0, the condition 

| p,l > 1, | | < 1 is valid, and the limiting current 
may be produced by the components of the first species 
only. Thus the quadrant of space (j , ,  j,, j,) defined by 
the condition v > 0 (j ,  > 0, j, > 0) is divided between 
variants of "limitation" by cations of one or other 
species. However, "limitation" by cations is impossible 
in the quadrant (j ,  < 0, j, < 0), which also agrees with 
the condition v > 0. Condition (21) for the limiting 
anion current can be expressed as 

The flow value j, from (B4) is negative if % > O,(v), 
where 

Therefore one or two different states of the limiting 
current can correspond to each point on the plane (v,  
8) .  From the mathematical point of view, this property 
of the plane (v,  0)  arises because it is the projective 
space [29] of the three-dimensional space (j,, jb, j,). 

The interdependence between different variants of 
the solution is much more complex when v < 0. In this 
case conditions | p,  I > 1 and I p, I < 1 coincide with 
each other and are valid for the points lying below 
O,(v): % < O,(v). Meanwhile, the increase in potential 
difference rl, from zero at fixed v and % (i.e. fixed P I ,  
P2, λ', λ") should be considered. It is obvious that 
below a certain value of the potential 4,) the limiting 
current will be reached by c 1 or c, depending on the 
values of p,  and p,. A further increase in rl, (reaching 
the other limiting regime) is impossible. This contradic- 
tion can be solved by the fact that the potential can 
change in both positive and negative directions, which 
leads to two different values of the limiting currents (at 
the same values of v and 0). The necessary condition 

for that state of the system is PIP2 < 0, which is 
equivalent to a domain located under the line 

and under the segment 

The segment 8, connects the two tangent points to 
parabola 0 ,  mentioned above (see Fig. 3), and the line 
8, begins at the tangent point to θ4, and θ1,  and is 
parallel to the axis of the parabola H I , ? .  Therefore in 
the domain restricted by the broken line, composed of 
O,, 0, and the axis v = 0, two variants of limiting 
currents determined by c ,  and c, exist. A simple but 
rather cumbersome analysis shows that in the domain 
between 0, and O5 the limitation process is determined 
only by c,, and in the triangle between 0, and 0, it is 
determined only by c 1. 

As the space quadrant j,, jb > 0 is divided into two 
parts, corresponding to two regimes limited by c ,  and 
c,, the space quadrant j, < 0, j, > 0 is similarly divided 
into two parts, corresponding to limitation by c, and 
c,. In this case the condition of the limiting current, 
determined by c, (i.e. j1 > 0 or 8 > %,), is valid over 
the whole domain O > 8, and in the triangle limited by 
%,, 8, and v = 0. 

Only one surface, according to the condition c,(O) = 

0. is located in the space quadrant j, > 0, j, < 0. This 
occurs because the condition jb > 0, necessary for limi- 
tation by c,, is valid only when 0 < %,, i.e. in the region 
totally "occupied" by c ,  and c2. 

Figure 4 is a "map" showing domains for different 
regimes of system behavior. This "map" allows the 
possible regime(s) of limitation to be defined for each 
point (v,  %), after which the value(s) of the limiting 
current can be determined using eqns. (21) and/or 
(22). 


