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Abstract-The functioning of thermogalvanic cells has been studied theoretically. The analysis for the 
simplest case which accounts for only diffusion transport of the reacting substances from one electrode to 
another has been made. The simple relation for thermodynamic efficiency of such energy sources was 
obtained. The diffusion-migration transport for the horizontally arranged cell and the diffusion- 
convection transport for the vertically arranged cell were studied in detail. The original mathematical 
methods for solving transport equations were used. Analytical results for the concentration distribution 
and the current-voltage curves were calculated. The principal role of electrode kinetics (fast changing of 
the equilibrium electrode potential with the temperature) was shown. Finally, the general algorithm for 
improving thermogalvanic cells was proposed. 

Key  words: diffusion-migration transport, fluid motion, efficiency concentration distribution,  current- 
voltage curve. 

NOMENCLATURE 

function, corresponding to the 
boundary conditions 
Airy function 
specific thermal capacity/J kg- K - ' 
initial concentration of salt/mol m - 
concentrations of cations species i,/ 
m ~ l m - ~  
anions concentration/mol m -  
dimensionless concentrations of ions 
species k (k = 1, 2, 3) 
initial concentrations of ions species 
i/mol m - 
concentrations of ions species i at the 
electrode surfaces/mol m -  
difference of the total concentration/ 
mol m - 3  
diffusion coefficients of the k-th ion 
(k = 1,2, 3)/m2 s - '  
thermal diffusion coefficient of the 
k-th ion (k = 1, 2, 3)/ 
m o l m - ' s - ' K - '  
= 2.71828 

ort in the direction of axis y 
index of adding 
Faraday's constant/96487 C mol - ' 
coefficients of Fourier series for 
cations of kind m 
gravitation constant/9.8 1 m s -  
matrix of a linear system 
cell height/m 
imaginary unity 
electrical current/A 

* Permanent address: A. N. Frumkin Institute of Elec- 
trochemistry, Russian Academy of Sciences, Leninsky Pro- 
spect 31, 117071 Moscow, Russia. 

current of short circuit/A 
integral current/A 
density of electric current/A m - 
exchange current density/A m -' 
current densities, transported by ion 
species 1 and 2/A m - 
dimensionless current density 
renormed dimensionless current 
density 
maximum density of electric power/ 
W m - 2  
thermal density flux/W m-' 
transported entropy/W m - 2  
rate constants of forward and back 
reactions, respectively 
ratio of initial concentration 
index of adding 
distance between electrodes/m 
constant of integration 
ions of the redox couple 
axis, directed from the electrode into 
the solution 
constant of integration 
pressure/Pa 
useful power/W 
maximal useful power/W  
vector for linear system 
internal resistance/R 
internal resistance a open circuit/R 
external resistance/R 
universal gas constant/ 
8.314Jmol-' K - '  
Reynolds number 
constant of integration 
area of electrode/m2 

absolute temperature/K 
average values of temperature/K 
temperature of electrodes (i = 1,2)/K 



mobility of the k-th ion (k = 1, 2, 3)/ 
m 2 s - l  v-1 
cell potential/V 
cell potential at open circuit - V 
fluid velocity/m s - ' 
vector of the right part of linear 
system 
intermediate parameter of theory 
coordinate, directed from one elec- 
trode to another/m 
coordinates of electrodes/m 
dimensionless coordinate 
coordinate, directed along the elec- 
trode surface/m 
charge numbers of cations 
charge number of anions 
ratios of charge numbers 
transfer coefficient 
thermal expansion coefficient/m3 K -  ' 
coefficient of dependence of the 
density on concentration/m3 mol- ' 
combinations of charge numbers and 
diffusion coefficients 
normalised efficiency 
efficiency of the ideal thermodynami- 
cal system 
efficiency of the real thermodynami- 
cal system 
dimensionless parameter O. m = 1,2 
parameter of theory/m- ' 
specific resistance/R m 
temperature conductivity coefficient/ 
m2s- '  
coefficient of thermal conductivity of 
liquid/W m- ' K - ' 
equivalent electroconductivity/ 
Rm4mol- '  
dimensionless combination of diffu- 
sion coefficients 
value of Airy function and its deriv- 
atives at zero 
kinetic viscosity/m2 s- ' 
surface overpotential/V 
density of liquid/Kg m- 
dimensionless exchange current 
density 
coordinate, directed along the surface 
of the electrodes 
potential/V 
equilibrium potential/V 
stream function/m 
ratio of diffusion current density and 
exchange current density dimension- 
less potential 
values of a dimensionless potential at 
the electrodes 
intermediate parameter 

INTRODUCTION 

Direct transformation of thermal energy into electri- 
cal by means of thermogalvanic cells (TGC) on an 
electrochemical basis is one of the most attractive 
ways of energetics development. The characteristic 

features of those systems, such as the absence of any 
moving mechanical parts, the absolutely complete 
and closed usage of solutions, longevity and simpli- 
city of use are their obvious merits [l-4]. The funda- 
mentals of thermogalvanic cells are discussed in [5, 
6]. 

Such research is carried out most actively in Japan 
due to significant amounts of geothermal water 
supplies. That research includes experimental studies 
of the functioning of different TGC variants, as well 
as model calculations by supercomputers [7, 8]. The 
main shortcoming of TGCs is their extremely low 
efficiency that makes their application in common 
practice impossible. The main aim of researchers of 
TGC is to find, experimentally the characteristics of 
the device (the temperature of electrodes, contents, 
geometrical size), which would provide the highest 
efficiency. Model calculations of such systems 
demand significant computer time. This prevents the 
systematic research of all possible variants of TGC. 
Actually, only a few calculations for some variants of 
TGC, more or less related to those real systems that 
already exist, have been made [9, 10]. This is why it 
is necessary to work out a reasonably simple theo- 
retical model which can help in studies of the prin- 
cipal properties of TGC and also provide a 
theoretical estimation of the efficiency of present 
TGC constructions. 

The first three parts of the present paper are 
devoted to general properties of TGC and also to 
the qualitative estimation of their efficiency. The 
main steps of obtaining the current-voltage curves 
for TGC are described in the fourth part. It allows 
us to obtain a more accurate evaluation of the effi- 
ciency. The final two parts are devoted to the dis- 
cussion of the fluid flow in the volume of TGC and 
to the distribution of concentrations arising under 
the diffusion and convection effects. 

1. TGC as an electrical system 

TGC is the usual source of current (Fig. 1). The 
effective voltage, as well as the electric current in the 
system varies with the external resistance r,,,. The 
qualitative behaviour of I(r,,J and U(re,J depen- 
dencies is shown in Fig. 2. When re,, + 0, the current 
I tends to l o  (the current of the short circuit) and 
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Fig. 1 .  The principal electrical scheme of a TGC. 
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Fig. 2. The typical dependences of the current I, the effective voltage U, the internal resistance r and the 
useful power from the external resistance r,,,. 

when re,, + m and I  -, 0, the voltage on the load 
tends to U,, the open-circuit voltage. In the general 
case, the inner resistance r can be calculated from the 
second Kirchhoff relationship for the closed circuit: 
r = UO/I - rext: r is a function of r,,,, as well as of 
useful power P = UI educed on re,, (Fig. 2). But over 
the main range of re,, the function r(r,,,) is almost 
constant, equal to the internal resistance r, of the 
open circuit. 

It can be easily seen that power P,,, educed on 
the external resistance, becomes maximal under the 
condition of equality of inner and external loads 
r,  z re,, and is equal to 

The same power, obviously is reduced on the inter- 
nal resistance r,. 

The most important difference of TGC from usual 
electrochemical sources of current is that the useful 
capacity is produced at the expense of a temperature 
difference between electrodes and does not depend 
on a power educed on the inner resistance. Even in 
the open-circuit case, almost the same energy is 
required for maintaining the temperature difference 
between electrodes, as for working in the optimum 
regime. That is why P,,,, given by formula (1), is the 
optimum value. Thus, to avoid the additional losses 
of power, the electrical resistance in the external 
device should be always constant and equal to the 
internal resistance of TGC. 

Some experimental current-voltage dependencies 
for TGC are given in [7]. They look typical for elec- 
trochemical systems, ie the current reaches limiting 
values in the case of sufficiently high modules of 
potential difference. The only difference is that this 
curve does not pass through the origin U = 0, I = 0. 
The point of intersection of this curve with the axis 
U (U = U,, I = 0) relates to the completely open 
circuit, the point of intersection with the axis 
I(U = 0, I = I,) relates to the short circuit. These 

two points are situated not far from each other (in 
comparison with the characteristic value of the limit- 
ing current in the system) and get closer when the 
temperature difference is lowered. Obviously, a 
certain regime of TGC functioning, ie a certain value 
of r,,,, correlates to each point of the curve segment 
between U, and I,. The points outside this segment 
can principally not be reached when the TGC is used 
as the current source. It means that the real TGC 
functions in a regime far from limiting one (near the 
equilibrium) when the current-voltage curve can be 
considered an approximately straight line, which 
does not pass the zero point. 

2. Dimensional analysis of TGC functioning as a 
thermodynamic system 

Let us consider the simplest TGC model, consist- 
ing of two large parallel plates placed a small (in 
comparison with their size) distance L from each 
other and heated up to different temperature values 
TI and T,. Then, the thermal density flux J ,  from the 
heated plate to the cold one can be calculated as 

where I? is the coefficient of thermal conductivity of 
liquid between the plates. In equation (2) we pre- 
sumed that there was no convective flow of solution. 
Sometimes, instead of the thermal conductivity coef- 
ficient i?, it is more convenient to use the tem- 
perature conductivity coefficient: K = VCp, where p 
is the density of the liquid and C is the specific 
thermal capacity. The heat absorption [5] due to the 
entropy change of the electrode reaction and the 
transported entropy J', is proportional to the tem- 
perature, current density and thermoelectric power 
of the system U,/(T, - T,) 

I uo 
J' --T2- 

, - S  T2-TI '  (3) 



where S is the area plates. The heat supplied to the 
system is J h  + Jh. 

The maximum density of the electric power J ,  can 
be calculated as J ,  = P,, J S .  The inner resistance of 
TGC, r,, can be presented as r ,  = zL/S where z is 
the specific resistance and can be evaluated as a: = 
(cOAO)-', where c0 being the concentration of salt, Lo 
is the equivalent electroconductivity. Thus, the elec- 
tric power density can be presented as 

It is more convenient to use the normalised efficiency 
q = qre, Jqclrnot which is the ratio of efficiency of real 
engines q ,,,, = J J J , + J h  to q,,,ot=T2-Tl/T2 
-the efficiency of the ideal thermodynamical system, 
functioning by Carnot cycle. All efficiencies (q,,,,, 
qarn0, and q) are less than unity: 

We can call the thermodynamic system "very good" 
if q about 1 and "very bad" if q x 0 The value of the 
efficiency itself is not as readily meaningful as the 
value of the norrnalised efficiency. Therefore, exactly 
normalised efficiency q can be abbreviated to "effi- 
ciency" in the ordinary sense. 

The only dependent parameter, U,,  involved in 
the equation (4), can be obtained from the analysis of 
TGC electrochemical kinetics. 

3. Electrochemical model of TGC functioning 
The real TGC is an electrochemical system with a 

concentrated mixture of two salts, for example FeCI, 
and FeCI,, placed between two identical uncon- 
summated electrodes. The same electrochemical 
reaction takes place on both the electrodes: 

where z, and z, are the charge numbers of cations. 
Rate constants of forward (k,) and back (k,) reac- 
tions depend on the temperature and that is why 
they are different for different electrodes. Equilibrium 
concentrations, defined by the ratio k,/k,, appear 
different at different electrodes. It causes ion trans- 
port from one electrode towards another, and pro- 
vides for the reaction process in the anodic direction 
on one electrode, and in cathodic direction on the 
other one. 

In accordance with generally accepted 
designations[11], density of the electric current, 
flowing through the surface of the electrode, can be 
presented as follows [l2] : 

-(zl - z2X1 - a)F t  
j = jo(y exp ( RT 

where j ,  is the exchange current density, c ,  Is and 
c2 IS are concentrations of ions Ma+ and Mz2+ in 

the vicinity of the electrode, cy and c: are the corre- 
sponding initial concentrations, T is the absolute 
temperature in the vicinity of the electrode, R is the 
universal gas constant, a is the symmetry factor and 
( is the surface overpotential: 

4 is the potential drop between the nearest to the 
electrode zone and the electrode and 4"' is the equi- 
librium potential. 

The most frequently used systems for studying of 
TGC are [Fe(CN),I3 - I [Fe(CN),I4- (standard 
potential 4"' = 0.36 V at T = 298 K) and 
Fe2+ ( Fe3+ (standard potential 4'" = 0.771 V at 
T = 29810. But in definition (7), the equilibrium 
potential, measured at the real temperature of the 
electrode, is included instead of the standard poten- 
tial, measured at the standard temperature. 

On open circuit the electrical current j equals zero, 
therefore the potential drop inside the solution 
depends on Soret diffusion only. As will be shown in 
the next section, the corresponding Soret potential 
tends to lower the existing potential difference U ,  
between the electrodes but it is usually significantly 
lower than U,.  It means that the potential drop 
between the electrodes may be estimated to a first 
approximation as 

where T, and T, are the electrodes temperature 
values.* Substituting U ,  into (4), we obtain 

Note that in most cases the value of J, is much 
greater than that of Jh and for the case of a small 
temperature difference between the electrodes 
(T, - T,) < T, we obtain the simplified expression: 

In expression (9) we assumed that the equilibrium 
potential of the electrochemical reaction depends on 
the temperature only. Substituting the parameter 
value into (9) in case when the concentrations of 
FeCI, and FeCI, in the mixture are both equal to 
1.0M, we get the approximate estimation for 
q - which agrees well with the experimental 
data [7]. 

As follows from relation (9), the normalised effi- 
ciency of TGC is defined as a product of three terms. 

As it had been pointed out by referee, 4"' is normally 
defined as a potential difference of the cell PU.T)lMZa+, 
Mn+ J nhe(T) where Pt and nhe electrodes are at the same 
temperature. Therefore, in the expressions above 4"' must 
be defined with respect to a hypothetical electrode, whose 
potential does not depend on temperature. However, it is 
more reasonable instead of a hypothetical electrode to use 
the real one at a mean temperature T,: TI < T3 < T,, ie 
4(')(T,) is defined as a potential difference of the cell 
R(TJ 1 Mm +, Mz2+ I nhe(T,). It has been shown that for the 
small temperature difference (T, - T,)/T, < 1 the value of 
U,, defined by equation (8) does not depend on T, in the 
first approximation. 
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The first of them characterises the type of the elec- 
trochemical reaction. In order to increase q, the elec- 
trochemical reactions that have the strongest 
dependence upon the temperature, should be used, 
and the temperature range where I d&')/dT I reaches 
its maximum should be chosen. 

The second term mainly characterises the electric 
conductivity of a cell. As mentioned by the majority 
of research. solutions should be concentrated up to 
the maximum value. In this case, parameter A0 is not 
independent, but is completely defined by the com- 
position of solution, concentration and its tem- 
perature.* It is important to emphasise, that in the 
stationary case under analysis, electroconductivity of 
the solution cannot be increased by means of addi- 
tion of any supporting electrolyte, because the elec- 
tric current in the system is conducted only by ions 
Ma+ and M"+. (There is an important difference 
between the stationary case, when an ion of a sup- 
porting electrolyte does not move and the nonsta- 
tionary case with ac or during the period right after 
switching on. In the time dependent problem the 
electric current is transported by supporting electro- 
lyte ions as well.) The average value of the absolute 
temperature T in the second term of (9) is varying 
within narrow limits and cannot significantly change 
the normalised efficiency q ;  moreover, as was already 
mentioned above, T is to be chosen deliberately in 
order to maximise the first term. 

The last term is inverted thermal conductivity of 
the solution, ie of the solvent. Its value is, actually, 
constant for all water solutions and only slightly 
depends on the temperature and concentrations (the 
variation is less than 5%). 

Besides, the analysis of the factors, upon which the 
normalised efficiency q does not depend, is not less 
important. At first, the normalised efficiency q does 
not depend on the temperature difference between 
the electrodes (if it exists), because the potential dif- 
ference U, in (4) is proportional to (T, - T,) with 
high accuracy. Secondly, the normalised efficiency q 
depends slightly on all geometrical sizes of the 
system, in particular, on the distance between elec- 
trodes. Geometrical sizes influence on the appear- 
ance of the natural convection in the liquid. 
Convection promotes the transport of electroactive 
ions from one electrode to another and reduces elec- 
tric resistance of the system. But, at the same time, 
convection increases the heat transport from one 
electrode to another. As long as the mass diffusion 
coefficient is lower than the temperature diffusivity 
there is a region where the convection transfer of the 
heat increases slower than the mass transfer. In 
detail, this case will be considered in sections 5 and 

* Strictly speaking, concentration c0 is not good defined 
value, because solution within TGC is always mixture of 
two substance. Reaction (6) on the both electrodes pro- 
cedure with the same rate, which means that composition 
of solution does not change with time. Therefore, if the con- 
centration of one of cations species is more than another 
one, the excess becomes electropassive. Therefore, the c0 
really means the minimum concentrations of the cations. In 
practice one only uses the mixture of two salts with equal
concentration cO. For such solutions the integral parameter 
A0 also becomes well defined. 

6. Only the minor dependence of q on the convection 
(natural or artificial) was found. 

4. Transport in TGC without convection transport 
Let us consider TGC in the absence of convective 

flows. It can be either a horizontal cell with heated 
upper electrode or the one with heated lower elec- 
trode (under additional condition Ra < Racritlcal; for 
the pure solvent the convection flow, as in Bernar 
cells, arises if Ra > Rac,,,ica, = 1708). Convection can 
also be suppressed by injection of a porous filler 
between the electrodes or of some other 
separators[13]. 

The distance between the electrodes is much less 
than their size, consequently, it may be assumed that 
the processes are described by onedimensional 
transport equations. The temperature distribution in 
this case is calculated trivially: it changes linearly 
from the value T, on one electrode to T, on the 
other. The distributions of the cation concentrations 
c, and c, with the charge number z, and z2 respec- 
tively, and anion concentration c, with the charge 
number z3 are determined by the system of Nernst- 
Plank equations: 

Here D,, u, and D: are diffusion coefficients, mobil- 
ity and thermal diffusion coefficient of the kth ion 
(k = 1, 2, 3), respectively, j1 and j, are current den- 
sities, transported by ion species 1 and 2, F is the 
Faraday number, q5 is the electric potential and x is 
the coordinate, directed from the left electrode (x = 
x,) towards the right one (x = x,J, x, I x I x,. 
Relation (13) expresses the condition of elec- 
troneutrality. 

It follows from the stoichiometry of the electro- 
chemical reaction, that 

and, consequently, the density of the integral electric 
current density can be presented as 

The cathode reaction on one electrode occurs in sta- 
tionary conditions with the same rate, as the anode 
reaction on the other electrode. That is why the total 
amount of substance of each sort remains constant 
and is defined by the initial concentrations only: 



Beside the two boundary conditions are valid on 
each electrode: 

For simplicity, we will further assume α = 4. The 
potential drop u between two electrodes is the alge- 
braic sum of the potential drops on the electrolyte 
solution boundaries and inside the electrolyte. 

We assume, that the Einstein correlation for 
mobility is valid : 

that is, strictly speaking, true for diluted solutions 
only. Obviously, the mobilities and the diffusion 
coefficients also depend on the temperature. But we 
suggest, that the temperature difference is not too 
high, so that the mobilities and the diffusion coeffi- 
cients can be considered constant in the whole 
volume. 

It can be verified a posteriori, that the arising con- 
centration difference is insignificant, therefore the 
mobilities and diffusion coefficients dependence upon 
the concentrations can be definitely neglected. 

Expressions (10)-(20) are complex system of differ- 
ential, algebraic and integral (16) equations. In order 
to find the current-voltage dependence U(1) from 
(10)-(20), it is necessary that the profiles of concen- 
trations and potential should be determined. Differ- 
ential equations (10)-(12) are nonlinear, because they 
include products of two unknown functions: concen- 
tration and potential. Boundary conditions are also 
nonlinear (with the exponential terms). 

Here we are going to present two simplified solu- 
tions: one neglecting the migration transport and 
another neglecting the thermal diffusion transport. 
These results will be afterwards compared. 

In the absence of the convection flow, the term 
corresponding to the thermal diffusion, is simply 
dT/dx = (T2 - T,)/(x, - xJ. As far as the migration 
terms in (10)-(13) are negligible the expression for 
the concentration profiles can be found immediately: 

Substituting this expression into (17) and (18), we 
obtain simple equations for {, and 5, which can be 
solved as square equations. The resulting current- 
voltage curve is shown in Fig. 3 (Curve b). 

The other case, when migration occurs, requires 
much more cumbersome considerations. Anyway, 

Fig. 3. The current-voltage curve for systems 
[Fe(CN),I3- I [Fe(CN),I4- in the case of stagnant electro- 
lyte: (a) diffusion-migration transport; (b) diffusion and 
thermodiffusion. cA=c:= lM,  D, = D, = 4 
x 10-'cm2s-', L = 1 mm, j ,  = lOOAm-', D: = D: = D, 
x 10-'M K-',  ∆T = 30K. The limiting diffusion current 

density for anions is scale for current. 

this complex mathematical problem allows one to 
get an exact analytical solution, that does not 
require any additional approximations or lineariza- 
tion. This solution in case of electrodes with equal 
temperature and the only electroactive species of 
ions was given in [14]. The principal steps of gener- 
alisation of that solution for the case of different 
electrode temperatures and two electroactive ions, 
and also the final formulas for the current-voltage 
dependency, are given in Appendix A. 

The main principle of the solution [14] is that 
instead of seeking the direct dependence j(U), the 
parametrical dependencies j(w) and U(w) should be 
determined. The dimensionless drop of potential in 
the tran zone 4 I,=, -  φ|            is used as an 

   intermediate parameter a.With these expressions for 
j(w) and U(w) it is possible to plot the curve for the 
current-voltage dependence, as well as by means of 
functions j(U) or U( j). 

The current-voltage curve obtained by theoretical 
calculations for one of systems 
[Fe(CN),I3- 1 [Fe(CN),I4-, studied experimentally 
in detail in a number of papers [7-9], is given in Fig. 
3 (Curve a). Thus, the expressions (17)-(19) give the 
elementary expressions of the current-voltage depen- 
dence # U). 

It is shown in Fig. 3 that the both curves begin at 
the same point U, on the axis j, related to the open 
circuit. In point U0/2, corresponding to the optimum 
regime of TGC functioning, the curves can be con- 
sidered a not distinguishable. The noticeable diver- 
gencies appear near the region of the short circuit 
and further towards high values of voltage that are 
not realised in practice. 

One can note that the current-voltage curve devi- 
ates from a straight line. The simple explanation of 
this is the following. The electrochemical reaction (5) 
is supposed to be reversible. Reversible electrochemi- 
cal reactions have only one inflection point on the 
V-A curve near zero currents. The shape of the 
curve on the Fig. 3 is different and shows that the 
reaction under investigation is, really, irreversable. 
The typical value of the exchange current density for 
such a system is about 100Am-2 which is less than 
the typical value of the diffusion limiting current 
density. For detail discussion see[9, 12]. 
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Another advantage of the exact solution given in 
the Appendix A is worth mentioning. For the fixed 
value of o, ie for the certain current density j and the 
potential difference U, it is possible to plot the pro- 
files of concentrations ci(x) (see Fig. 4). As well as the 
curve j(U), these curves are plotted in parametrical 
form of (ci(4), ~ ( 4 ) ) ;  the value of the electric potential 
4 in the transport zone volume is used as an inter- 
mediate parameter. These profiles of concentrations 
are given for the above mentioned electrochemical 
system in the regime of the maximum normalised 
efficiency, ie at U = U0/2. In the same figure, the 
integral concentration c = c, + c2 + c3 is given. One 
can see that although the concentrations c, and c2 
vary, their changes compensate each other, so that 
the difference of the total concentration Ac and con- 
centration of anions Ac, is not significant: ∆c << c. It 
also proves our suggestion, that the coefficients of 
diffusion and mobility can be considered approx- 
imately independent of the concentrations (because 
concentrations themselves do not change 
significantly). 

5. Convective flow of the liquid in TGC 

Let us consider an ordinary TGC with vertical 
electrodes, where the distance between the electrodes 
is much less than the cell size (Fig. 5). In such a cell 
the two dimensional liquid flow with the velocity v, 
which can be described by the stationary Navier- 
Stokes equation with additional terms in Bous- 
inesque form, arises : 

Here p is pressure, v is kinetic viscosity, g is the 
gravitation -constant, /? is the thermal expansion 
coefficient, /? is the coefficient of dependence of the 
density on concentration, t ,  is the ort in the direc- 
tion of axis y, To, co and p are the average values of 
the temperature, concentration and density, respec- 
tively. The numerical solution of such a double 
diffusion problem is very complicated [15]. The char- 
acteristic rate of the liquid motion I v 1 is extremely 
low: ( v 1 - ms-', the characteristic size of the 
system (the distance between the electrodes) is 

Fig. 4. The dimensionless concentration profiles of ions, 
corresponding to the optimum regime. Other parameters as 
for Fig. 3. Note, that the distance between electrodes is 
used as the length scale, the average concentration of 

anions is scale for concentration. 

Fig. 5. The scheme of a TGC for calculation of diffusion- 
convection transport. 

-10-3m, v for water is approximately equal to 
10-6ms-'.  Therefore, the Reynolds number is 
Re - 0.1, that gives the ground to neglect the nonlin- 
ear term in (21). 

The pressure gradient term can be eliminated by 
taking the curl of equation (21). In terms of the 
stream function, which is correlated to v by the 
expression 6 = (-Jay, - -/ax), we determine that 

We can significantly simplify the consideration if we 
compare the typical values of two terms in the right 
part of (22). In accordance with the results of 
reference [9], if the convective flow of liquid takes 
place under the influence of the temperature differ- 
ence of 50 K, the arising difference of concentrations 
is 0.08M. Introducing /? = 3 x 10-4m3K-'  and 

= 5 x m3 mol-I in accordance with the table 
data from [16, 17], we get that the first term in the 
right part of (22) is four times as  much as the second 
term. It means that the convection flow of liquid 
takes place mainly due to the temperature gradient, 
but not due to the concentration gradient. 

The other simplification is connected with the fact 
that in the main bulk volume of liquid the thermal 
flow density from one electrode to another is con- 
stant, that provides for the temperature profile 
remaining linear [9]. Some deviations from linearity 
are observed in the upper and lower parts of the cell, 
where the convective thermal transport becomes sig- 
nificant. It occurs because there is the heat transport 
from one electrode to another in the main volume of 
liquid, ie in the horizontal direction, and the liquid 
flow is directed upwards or downwards, ie in the per- 
pendicular direction and cannot cause any signifi- 
cant convective heat transport. These reasons were 
also supported by computer modelling; its detailed 
description is beyond the scope of this paper. 

Thus, in the middle part of the cell (excluding two 
approximately square upper and lower domains) the 
derivative aT/dx can be replaced by the constant 



temperature gradient and we can present (22) in the 
following form: 

where 

is a certain constant. The equation of the viscous 
liquid motion (23) is to be completed by boundary 
conditions in the absence of tangential rate com- 
ponent on the electrode surface: 

and also by the condition of the absence of the 
normal rate component. The latter is equivalent to 
the statement that the boundary between the liquid 
and solid phases is one of @ = const. and the con- 
stant can be chosen arbitrarily: 

In the main volume the liquid flow does not depend 
on boundary conditions on the upper and lower 
boundaries of the cell. Equation (23), with boundary 
conditions (25) and (26), gives the elementary solu- 
tion : 

or, for the rate: 

The liquid is stagnant along the vertical middle line 
due to the axial symmetry of TGC. Expression (28) 
will be used further for solving the problem of 
diffusion-convective flows of cations under the influ- 
ence of the forced convection. So, the general 
problem of diffusion-convective transport of mass 
and energy can be divided into three consequent 
steps: (1) calculating of the heat transport problem; 
(2) solving of the subproblem of the generation of 
natural convection of liquid; (3) solving of the sub- 
problem of cations of two species transport under 
the influence of the diffusion and the given fixed con- 
vection. 

Such a division is mainly stimulated by the physi- 
cal sense of the problem. The existence of the tem- 
perature difference between the electrodes (the 
first-order effect) leads to two consequences (the 
second-order effects): appearance of the heat convec- 
tion in liquid and of the electric current flow. The 
latter causes a certain redistribution of concentra- 
tions, and it leads to the concentrational convection 
of liquid (the fourth-order effect).   

Certainly, the quantitative evaluations are neces- 
sary in order to support these qualitative consider- 
ations, and that was done at the beginning of this 
part, but these concentrations provide for better 
understanding of the reason why the heat convection 
should be taken into account (the second-order 
effect) and the concentrational convection should not 
(the fourth-order effect). 

6. Diffusion-convection currents in TGC with vertical 
electrode arrangement 

The diffusion coefficients of ions are much less 
than the heat conductivity coefficient and, conse- 
quently, the processes of ion transport and energy 
transport in TGC occur in two absolutely different 
way (see part 5). 

In general, the cation transport from one electrode 
to another can be divided into three stages: 

(1) Diffusion transport of an ion from the elec- 
trode surface inside the moving liquid. 

(2) Convection transport along the surface to its 
end; then, in the upper (or lower) part of the cell ions 
are transferred from one electrode to another by the 
liquid flow; then they keep moving along the surface 
of the other electrode. 

(3) Diffusion transport from the moving liquid 
towards the other electrode. 

So, all the changes of concentration are located in 
the thin boundary layer near the electrodes and the 
initial values of all components remain constant in 
the main central volume. 

We take into account the fact that the cell height h 
is much more than its width L = (x, - x,), and 
introduce the dimensionless "surface" system of 
coordinate (n, 7). The origin of this new coordinate 
system is the upper left corner of the cell, the normal 
axis ii is directed from the electrode into the solution, 
and the tangential axis i consists of two com- 
ponents: the first one is directed along the surface of 
the first electrode downwards, and the second one is 
directed along the surface of the second electrode 
upwards (see Fig. 5); both components are directed 
along the direction of the liquid flow. There is a 
segment of the length L that is missing at the joint 
point of those two components. But there are no 
electrode processes in this region, and its length is 
much less than the length of the electrodes L Q h; so 
we can expect that the concentration and its deriv- 
ative will be practically continuous in this point. The 
same considerations can be applied to the other joint 
point in the origin. The dimensionless equation of 
the convective diffusion [13] for cations of the kind m 
is : 

where the value of h is chosen as the length scale. In 
equation (29) the common approximation for trans- 
port in the boundary layer was done: in the expan- 
sion of the rate function v along the coordinate x 
only the linear term was left at x = xu (or x = x,), 
that relates to the absence of the lateral diffusion, as 
the convective transport is much more significant in 
that direction. 

Functions c, and c2 are to be continuous in the 
points r = 1 and r = 2(r = 0), ie to be periodical 
functions of the coordinate T with the period 2. 
Besides the solution of equation (29) tend to the 
volume values c! and c! at a long distance from the 
electrode, ie when n has a rather high value. 

Although equations (29) look rather simple, they 
allow us to describe well all three stages of transport, 
listed at the beginning of this chapter. The main diffi- 
culty in their solving is that the boundary conditons 
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inevitably include both surface concentrations c ,  1, 
and c2 1,. That is why both equations (29) are to be 
solved simultaneously. 

Migration transport is not accounted for in the 
problem (29), which means that the supporting elec- 
trolyte is in excess, or that the electric potential in 
the transport zone can be considered constant. Thus, 
the voltage drop (and the overvoltage) between the 
electrode and the bulk solution can be assumed con- 
stant along the electrode surface. It makes the 
boundary conditions (6) linear relative to concentra- 
tions c, and c,, and it allows us to apply the 
common methods of mathematical physics. Such a 
solution, obtained by means of Fourier- 
transformation and expansion by Airy functions, is 
given in the Appendix B. 

A few examples of the concentration profiles c ,  
- cy, in the horizontal sections of the cell are pre- 

sented in Fig. 6. Liquid motion in the cell moves 
counter clockwise. It can be shown that as an ele- 
mentary volume, taken beside the left electrode, 
moves down, it is being gradually saturated by the 
cations 1, and as it moves upwards along the other 
electrode, it loses its cation supply and gets to the 
upper part of the cell short of cations (see Fig. 6). 
The curve for c, - c; differs from Figs 6 and 7 only 
in the negative factor, that means that the shortage 
of cations of kind 2 appears not in the upper, but in 
the lower part of the cell. Three-dimensional surface, 
corresponding to the concentration distribution in 
the volume of TGC, is shown on the Fig. 8. 

The current-voltage curve for the case of 
diffusion-convection transport looks similar to the 
ones for the diffusion-migration case, but character- 
istic values are different. Let us estimate the maximal 
possible decreasing of the resistance due to the con- 
vection flow. Suppose that convection transfers ions 
from one cell to another fast and that resistance 
occurs mostly due to slow diffusion transport in 
boundary layers. Of course, this approximation gives 
us over-estimated values of efficiency. The thickness 
of the diffusion layer on one electrode is about the 
scale of changing first term in the series for concen- 
tration profile (see equation (B4)). Therefore, we can 
estimate the part of the cell occupied by two diffu- 
sion layers as 

Fig. 6. The deviation of concentration of cations of the first 
kind along surfaces of the first electrode (0 < r < 1) and of 

the second one (1 < 7 < 2). 

Fig. 7. The dimensionless concentration profiles of cations 
of the first kind in the horizontal sections of TGC: (1) 

upper part; (2) medium part; (3) lower part. 

In most cases the value of (30) is around 3. If it is less 
than 1, the diffusion layers overlap and, actually, 
there is no convection transport. For high values of 
8, ie temperature difference, the convection trans- 
port of heat becomes important, so that normalised 
efficiency reaches its limiting value. In general, we 
approved the conclusion of [7-10] that the convec- 
tion transport can increase the efficiency of TGC up 
to 2-3 times. 

CONCLUSION 

In the present work the functioning of existing 
thermogalvanic cells has been theoretically studied. 
The analysis for the simplest case with account for 
only diffusion transport of the reacting substances 
from one electrode to another, as well as for more 
complex cases, has been made: diffusion-migration 
transport for the horizontally arranged cell and 
diffusion-convection transport for the vertically 
arranged one. In all cases the current-voltage curves 
were calculated for TGC. 

The qualitative analysis of the efficiency of TGC 
functioning has been performed. The brief algorithm 
for choosing the optimum parameters is the follow- 
ing: 

(1) The solvent with the lowest thermal conduc- 
tivity should be chosen. Water solution cannot be 
considered as a good one, although it is generally 
used. 

(2) The mixture of two substances, which can 
transform one into another by the reversible electro- 
chemical reaction like (5), should be chosen. The 
maximum changes of the equilibrium potential (5) 
with temperature should be possibly reached. The 
reaction (5) must be the reversible one, ie the 
exchange current density must be higher than the 
limiting diffusion current density (the constant resist- 
ance of the cell). 

(3) The temperature range for the working elec- 
trodes should be chosen, to provide for the optimum 
potential changes (see the previous item). 

(4) The concentrations of the components are to 
be high enough, but it should be taken into account 
that the growth of the efficiency with the concentra- 
tion is limited. Moreover, in the case of the horizon- 
tally arranged cell, when the migration transport is 
possible, too high concentration under certain condi- 
tions can lead to the following: one substance 



Fig. 8. The concentration distribution of cations of the first kind as a function of coordinates x and y (see 
also Figs 6 and 7). 

becomes a supporting electrolyte for another one, 
which can lead to reduction of the rate of matter 
transport and reduction of q. 

(5) The external resistance should be permanent 
(switches on and off are impossible) and have the 
same value as TGC itself. 

(6) Geometrical sizes of electrodes, the distance 
between them and their arrangement (horizontal or 
vertical), the temperature difference between the elec- 
trodes and the rate of liquid circulation inside the 
cell have a minor influence on the results compare 
with points (1)-(5) (see discussion in the end of 
section 6). 

It is still a question of discussion if the researchers 
succeed to find the optimum parameters of TGC by 
means of this algorithm. Now we have to admit, that 
the theoretical analysis of existing cells gives approx- 
imately the same evaluation for their efficiency, 
q-0.1%, as experimental measurements. 
Undoubtedly, it is not enough for any practical 
applications. 

We think, that the further progress in this field will 
be connected with TGC of principally new type [18, 

19]. in which the main volume between the elec- 
trodes is filled by gas phase. 
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APPENDIX A 

In this appendix the solution of the equation system 
(10)-(20) is presented and the parametric expression for the 
current-voltage dependence of TGC is obtained. 

Let us introduce the dimensionless variables: 

Z1 = zJz,; Z2 = z,/z,; Em = c,,Jc;; 

Then the Nernst-Planck equations, condition of elec- 
troneutrality and boundary conditions may be presented as 
follows: 

where 

Multiplying (A2) by Z , ,  (A3) by Z, and summing them up 
together with (A4), we get: 

Expression (A10)  allows us to transfer the independent vari- 
able i in equations (A2-(A4) for a new independent vari- 
able JI. It immediately results from (A4), that E, - exp +, 
and it results from (A3), that E ,  is the linear combination of 
exponential functions of potential exp I) and exp A*, where 
A is: 

The unknown coefficients in the exponents are to be deter- 
mined from the boundary conditions. It is convenient to 
represent the solution for E , ,  E, in the form 

where the constant s is calculated directly from the trans- 
formed equation (A3): 

S = 
(Z, + I P ,  

(Z,  D2 - Z,D,)(A - 1) (A 13) 

In order to determine constants M and N, the integration 
variable in (A6) is changed and then (A10) is integrated, 
after that the obtained square equation should be solved 
relative to N :  

I - K  112 1 - K  
x ( Y 3 - T Y 5 ) w ~ - l ) ]  - [ ( Y 2 - T Y 4 )  

The designations are introduced for the potential drop in 
the transport region log o = $, - and for cumbersome 
algebraic combinations of charge numbers and diffusion 
coefficients : 



Comparison of the expression (A14),  (A12) and their com- 
bination with the definition (Al) result in the following: 

E3(P = 0) = M; E3(? = 1) = M o ;  

E2(2 = 0) = M(s + N); El(? = 1) = M(sw + Nω∆) .  (A16) 

Values El(? = 0) and El(? = 1) are derived from (A16) and 
(AS). Solving equations (A7), (A8) relatively w,, w, we get: 

The overvoltage values 5, and 5, are determined from the 
correlation (A17) after replacing of dimensionless variables 
by dimensional variables: 

As the dimensional potential drop in the transport zone is 
expressed just as RT/Z3 Fe", equation (19) can be used for 
determination of the potential difference U = U(o) between 
the electrodes. Thus, the functions U(o) and J(w) are deter- 
mined (see (A14)),  and it means that the dependence J(U)  is 
determined parametrically for all possible values of poten- 
tial difference. 

APPENDIX B 

In this appendix the solution of the convective diffusion 
problem for thermogalvanical cell with vertical arrange- 
ment of the electrodes will be given. 

Introducing dimensionless concentrations Em = cJco, it 
is possible to present equations (29) as 

where 

is a dimensionless constant. Due to periodicity of E, in the 
segment (0,2), concentrations can be expanded into Fourier 
series by variable r ;  their components 3:) fulfil the equa- 
tions: 

Solutions of these equations, restricted at n -. w, are the 
following: 

Eg) = ~ i ( @  n), I # 0 (B4) 

3!'= EZ, I = 0.  

Airy function Ai tends to zero exponentially with the argu- 
ment increase. The complementary Airy function of the 
second kind Bi increases unlimitedly and must be omitted 
from solution (B4), The Airy function can be expressed by 
Bessel functions with index i, and they are often applied in 
different problems of mathematical physics, especially in 
problems of quantum mechanics[20]. 

Summarising the Fourier series 

we get a solution, satisfying both periodical boundary con- 
ditions and initial wnditions for the bulk volume far apart 
from the electrodes. The indefinite coefficients Pi1 should be 
determined from the boundary wnditions (17), (18) for the 
electrode surfaces. 

As the electrical current on the surface of the electrode is 
transported only by means of diffusion, we get jl = 
z, FD,(ac,/dx). Taking into account stoichiometric rela- 
tions for currents (14), (15), boundary conditions (17), (19) 
can be presented as: 

where a and b are simple step-like functions of coordinate 
r : 

and 

Introducing (B5) into the first equation (B6), multiplying it 
by e-'j"', and integrating in the interval (0,2), we obtain a 
simple relation for the expansion coefficients. 

F? = - D2/D, ~ F Y  (B9) 

and introducing (B6) into the second equation, we get 

Here, p = Ai(0) = 0.3550 and p' = Ai(0) = 0.2588 are con- 
stant. Multiplying (B10) by e-'*", f = 1, 2, ... and inte- 
grating in the interval (42) we get an infinite system of 
linear equations relatively F: . 

where 

1 0 in other cases 
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The system of equations (B11)-(B14) is to be solved rela- 
tively F: , and after that the solution of (BS) appears to be 
dependent only on two parameters, w ,  and w,. They 
should be chosen with regard to a condition, that the inte- 
gral current i, flowing through the surfaces of two elec- 
trodes, is defined by the external source: 

So, we get two additional conditions for F', : 

Parameters w ,  and w ,  are to be found at fixed i from equa- 
tions (B16), and after that the value of the voltage difference 
between the electrodes u will be determined from (B8) and 

(19). Practically, it is more convenient to use the parametric 
form of the current-voltage curve with intermediate param- 
eter w ,  and to define the value of the integral current from 
one of equations (B16). In this case we have to solve 
numerically only one equation relatively w,, because the 
solution of the system (B11) can be obtained analytically 
with any required accuracy. 

There is also the theoretical evaluation of the number of 
those terms in the system (B11), which are to be taken into 
account. Actually, the solution in form (B5) is reduced to 
the expansion of the step-like boundary conditions (B6) by 
trigonometrical functions. Increasing of the terms number 
in (BS) leads to the better approximation of the step-like 
function, but, as a matter of fact, the solution loses its accu- 
racy in the upper and lower regions of the cell, ie in the 
area of L/h length around the points 0 and 1. It means, that 
taking into account the terms with their numbers, exceed- 
ing 

is out of the limits of accuracy. For typical systems 
h/L - 10, and the solution of system of equations (B11) 
does not involve any difficulties. 


