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Energy dissipation motion of a ball on a rotating disk (a turntable) has been considered. It is 
shown that the motion consists of two consequent stage - the motion towards the disk center 
along a cardioidic curve and the motion from the center along an unreeling helix. The limits of 
applicability of the results obtained are analyzed and qualitative comparison with experimental 
data is carried out. 

Anyone can easily repeat the experiment which yielded 
the unexpected results that inspired our interest in this 
subject. You need a turntable (we propose a record player) 
and a small plastic ring with a diameter of about 20 mm 
(see Fig. 1). Switch the player on and put the ring on the 
rotating turntable, so that it rolls near the edge of the 
turntable with zero velocity center with respect to the lab- 
oratory. Let us try to predict its future behavior. It seems 
natural to expect that the ring will rotate around a fixed 
point within some time period, then that friction will force 
it to follow the rotation of the turntable and finally centrif- 
ugal force will cast it away from the turntable. 

Now start the experiment and you will see a mysterious 
thing. If you are skillful enough to place the ring on the 
turntable such that it starts rolling over the turntable, 
rather than falling off, you will see that in spite of your 
expectations it moves towards the center. 

Now try to replace the ring with a ball. You will see here 
that there is almost no difference in behavior between a ball 
and ring. Since a theoretical investigation of the motion of 
a ball is far simpler than for a ring, we prefer to analyze 
this case. 

The problem of the motion of a ball along a steady sur- 
face is well understood.1-4 The motion of a ball on rotating 
surfaces is considered in Refs. 5-8. To those who are in- 
terested in the history of the problem we recommend read- 
ing Ref. 9. On an ellipsoidal surface the motion of a ball is 

described in Ref. 10. Equations describing the motion of a 
body rolling with dissipation are derived in Ref. 2. 

II. THE FIRST ATTACK: WHETHER A 
KINEMATICS CONSTRAINT EXPLAINS THE 
PHENOMENA 

After you have experimented enough with different 
balls, rings, and coins you note that the observed motion is 
a superposition of at least three different kinds of motion. 

( 1 ) The body continues to roll, keeping the direction of 
the angular velocity vector approximately constant. 

(2)  The body exhibits fast oscillations (whose frequency 
is of the order of the disk rotation frequency) around its 
initial position. 

(3 )  The center of the oscillations moves (rather slowly) 
towards the disk center. 

The first point can be easily understood due to the anal- 
ogy with a gyroscope but the two remaining points are not 
so evident. 

Let R be the angular velocity of the rotating disk, R and 
6 be the radius and the mass of the ball, respectively. We 
will assume that the ball rolls without slipping on the disk 
surface.-Dimensioni_ess variables (R,R,m) will be used, 
where R, k, and a-' are taken as the units of length, 
mass, and time (the tilde will indicate dimensional vari- 
ables). Thus, for example, R CZ- ' = R = m = 1. 

Since the ball is rolling over a plane, the location of its 
center may be given by a two-dimensional vector, r, from 
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Fig. 1 .  A ring ( 1 )  rolling without slipping on a surface of the rotating 
disk (2). The axis (3)  is already removed. 

the turntable center to the point of contact (Fig. 2) .  We 
introduce the Cartesian (orthogonal) coordinate system 
(x,y,u) with its origin at the disk center, the direction of 
the u axis is the same as the direction of the angular ve- 
locity R of the turntable. We may compose one complex 
number out of two coordinates of any vector in ( x y ) .  
Henceforth, let z = rx + ir, , o =ox + io, be complex repre- 
sentations of the position and the angular velocity of the 
ball by wmplex numbers. (Note that the third component 
of o plays no role for determining the ball positions.) Thus 
the problem will be solved if we determine the time depen- 
dence of those two numbers. 

If the turntable is horizontal, the only force acting upon 
the ball in the (x,y) plane is the force of friction, assuming 
the absence of slipping. We will analyze a more general 
situation if we assume the presence of an additional force, 
Fo (the result of the support reaction and the gravitational 
force) arising if the turntable is tilted. Newton's law says 
that 

Expressing Eq. (2.1 ) in terms of dimensionless complex 
variables, we obtain 

Another equation is given by the law of angular momen- 
tum. Because the only force producing a nonzero angular 
momentum with respect to the center of the ball is F f r ,  
we get 

Here, J is the moment of inertia of the ball (equal to f for 
a solid ball and f for a hollow sphere, if the mass and radius 
of the ball have been taken equal to unity). One can easily 
show that the vector product of e, and any vector in the 
(x,y) plane is equivalent to multiplication of a complex 
number z=x+iy by i, the imaginary unit. In terms of com- 
plex variables Eq. (2.3) can be rewritten in the form 

.,'F,~. 2- The coordinate system. 

The value of the friction force is determined by the no- 
slip condition, which means that the turntable and the ball 
have equal velocities at the contact point. The velocity of 
the turntable at this point is simply It X r, or -iz in terms 
of complex variables, while the velocity of the ball is equal 
to a sum of the center velocity v and .the relative velocity 
due to rotation, wXR. As a result we get 

Since the angular velocity o is not generally a total de- 
rivative of any coordinate, this relation cannot be inte- 
grated, i.e., the relation (2.1 ) is not a holonomic 

Now we have a sufficient number of equations [Eqs. 
(2.2), (2.4), and (2.6)] to eliminate the unknown quanti- 
ties o and F f r ,  and obtain an ordinary differential equation 
for z ( t ) .  If {=J/(J+ I ) ,  fo=F,,/(J+ I ) ,  the following 
equation 

holds due to Eqs. (2.2), (2.4), and (2.6). 
In the case of a horizontal turntable, Eq. (2.7) provides 

the conservation law, 

The left-hand side of Eq. (2.8) gives an expression for the 
angular momentum with respect to the contact point, and 
as expected it is conserved. The solution of Eq. (2.8) is 
given by 

where constants p and a are determined by the initial con-
ditions 

Thus without an additional force Fo, the friction force 
causes the ball to behave like a charged particle in a mag- 
netic field,10 i.e., to perform a uniform circular motion with 
a constant absolute velocity, lz'I =uO, along a circle with 
radius la 1 and center at the point z=p.  Note that 1 a 1 
= I v0 I /{ does not depend on the initial position of the ball, 
but only on the value of the initial velocity. 

Let us now return to the case of nonzero fo.  The right- 
hand side of Eq. (2.7) vanishes after the substitution 

In this case i may be interpreted as a complex coordinate 
of the ball's center referred to a coordinate system moving 
with the velocity fd{ in a direction perpendicular to the 
slope. The electromagnetic analogy may be extended, and 
we can say that the motion under study coincides with that 
of a charged particle in crossed electrical and magnetic 
fields.' 

The obtained results are interesting and unexpected by 
themselves but they do not explain the centripetal motion 
observed in our experiment. This means that our model 
misses some important factors, the most significant of 
which is the neglect of rolling friction. The next section is 
devoted to the effect of rolling friction on the ball's motion. 
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Fig. 3. The reasons for rolling friction force arising from: (a)  deforma- 
tion, (b) micro-obstacles, and (c) adhesion. 

III. THE SECOND ATTACK: THE EFFECT O F  
ROLLING FRICTION 

In the previous section we have introduced the force of 
friction that ensured the absence of slipping. Obviously this 
force vanishes if a ball's center performs a uniform 
straight-line motion along a fixed plane surface. 

At the same time our experience says that the ball roll- 
ing along the surface will stop sooner or later and thus 
there must be some force resisting the motion. We will 
refer to this force as a rolling friction force (RFF). RFF 
arises due to the deformation of the ball, and surface 
micro-obstacles along the ball path as well as due to ad- ., . , 

hesion. Figure 3 demonstrates schematically how 
RFF arises. 

It is suggested by our qualitative consideration that RFF 
has no horizontal components, but only produces the mo- 
ment directed counterwards to the angular velocity of the 
ball. Certainly, the value of the moment may depend on 
the absolute value of the angular velocity in a rather com- 
plicated way. Thus we can assume that the rolling friction 
may be chosen in the form 

where M is the angular moment of the RFF with respect to 
the center of the ball, o is angular velocity of the ball, and 
a(o) is a coefficient that may depend on the absolute value 
of o. 

Certainly, we do not pretend to find an expression for 
a ( @ ) ,  because it will depend on a lot of parameters defined 
by both the ball and the surface material, their machining, 
and so on. Still we will concentrate on the simplest case 
a ( o )  =const, because it admits an analytical solution and 
as it will be shown is in a good correspondence with ex- 
periment. 

According to the above reasons, we placed an additional 
term into the right-hand side of Eq. (2.4) and got 

Using Eq. (3.2) along with Eqs (2.2) and ( 2 . 6 ) ,  which 
remain valid regardless of the introduction of RFF, we 
obtain 

where q=a/(J+ 1 ). We may eliminate f o  from the last 
equation as we did from Eq. (2.7) by the simple substitu- 
tion 2=z-if,-Jq. 

One may be confused by the fact that the force f o  results 
in a shift of the coordinate system origin rather than a 
motion of the coordinate system, as in Eq. (2.7). [Note 
that Eq. (2.7) is a particular case of Eq. (3.3) where 
q=0]. Indeed there is no contradiction: if q tends to zero, 

Fig. 4. Regions of constant stability-type of the ball motion. 

the shift i f d q  will tend to infinity, and we may treat the 
uniform motion ensured by the force f o  as a motion to- 
wards the infinitely shifted new center. Note that the shift 
and motion directions correspond to each other. 

If f ,=O, Eq. (3.3) becomes a homogeneous linear dif- 
ferential equation and its solution may be expressed in 
terms of the roots of its characteristic equation 

as follows 

Here, C,  and C2 are constants to be determined from the 
initial conditions. Each term in Eq. (3.5) describes a mo- 
tion along a reeling or unreeling helix according to the sign 
of the imaginary part of the corresponding root. 

Due to the Viette theorem Eq. (3.4) is equivalent to the 
system 

Since the roots depend on { and q continuously, an imag- 
inary part may change the sign under variation of e and q 
only after taking zero value. 

Let Im A,  =O. Then the real part of Eq. (3.7) gives us 

and we conclude that either ReA,=O and thus A,  
=O,A,=c, q=0,  or ReA2=0 and in this case A,=<=l 
and A2=i77. The explicit form for the roots of Eq. (3.4) is 

Note, that A,  -.O,A.,+c, with q-0. After all we can divide 
the ((,q) plane according to the signs of the imaginary 
parts of A,  and A2 (Fig. 4). The figure shows that different 
pairs of 6 and q may result in different characters of the 
motion. Nevertheless the possible range of variation for 
those parameters is restricted by 
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Fig. 5. The path of the ball in the laboratory system of frame for (a)  7=0.005, uo=O; (b) 9=0.002, g=0.004; ( c )  7=0.005, u0=0.086. 

This region is shaded by horizontal lines in Fig. 4 from 
which one can see that in the allowed parameter range we 
will always have ImA,>O and Im A2<0. 

Such a solution means that for the determination of sta- 
bility it is sufficient to treat the case of small nonzero roll- 
ing friction coefficients as 0 < q <  1. Using this approxima- 
tion considerably simplifies the formulas and describes the 
real situation with reasonable accuracy. The first order ap- 
proximation may be given in this case by 

In the experiment discussed at the beginning of this pa- 
per we suggested putting a ball or a ring on the turntable 
with zero initial velocity. If the initial point has a complex 
coordinate zo the solution will take the form 

The second term describes a helix unreeling away from the 
circle of radius q ~ - ~ ,  while the first shows that the center 
of the helix moves towards the center of the turntable. 
Notice that this first term may be responsible for the ob- 
served motion towards the center. 

Indeed at the beginning of the motion and during a time 
of about J/q, the first term of Eq. (3.10) is the dominant 
one due to the small value of q. Thus during a considerable 
time the ball will move (slowly) towards the center, per- 
forming oscillations with an increasing amplitude due to 
the second term. As for the ring, it may even stop its 
motion by falling in the center of the disk. While moving 
near the center of the disk, it rotates slowly and its behav- 
ior looks like that of a coin being thrown on a table. The 
ball, on the other hand, will sooner or later move along an 
unreeling helix and its motion does not look as strange as 
that of a ring. It is worth mentioning that if we restore the 
usual units in the expression for the characteristic time of 
unreeling of the helix, we find that it does not depend on 
the angular velocity R of the turntable. In fact 

Here, a tilde over a variable indicates to us that we are 
dealing with the dimensional value. Hence, from- Eq. 
(3.1 1 ) the dimensional time of the change of stages to is 

Returning to Eq. (3.11 ) we see that the limit q + 0  is the 
limit of both small rolling friction and a large angular ve- 
locity of a turntable. Thus we may decrease the parameter 
q by increasing the angular velocity of the turntable in 
order to see the motion describe by Eq. (3.10). One can 
easily prove that an increase in R influences only the last 
exponent of Eq. (3.10), i.e., the frequency of the ball ro- 
tation along the circle with the radius | a | . The drift veloc- 
ity to the disk center z&J, the rate of increase of the 
radius, and the time to of switching between the stages do 
not depend on the angular velocity of the disk R at all. 
Thus even if the disk rotation rate changes with time the 
system behavior does not differ strongly from what has 
been described above. 

IV. DISCUSSION 

Someone who knows the history of the problem of the 
ball on the turntable (for example, from Refs. 6 and 9)
may ask a question: Why have not the effects and results, 
mentioned in our work, been discussed in the literature 
earlier? The answer is simple - in order to watch the mo- 
tion of the ball towards the center, it is necessary to exper- 
iment with a "bad" system, where rolling friction is 
present. For example, the system will be "bad" if the ball 
or the disk is made from a "soft" material. 

In laboratory installations only "good" materials are 
used. As for our experiments, they were made with a 

154 Am. J. Phys., Vol. 62, No. 2, February 1994 Sokirko et al. 154



record player and an old record which is good for nothing! 
So it is easier to make a "bad" system than a "good" one, 
and it can even be made in a home lab. Typical trajectories 
which can be seen in the experiment are similar to the ones 
demonstrated in Figs. 5(a)-5(c), where the results of the 
calculation according to Eq. (3.5) with different values of 
system parameters are given. 

The two stages of the motion are seen in Fig. 5(a). The 
initial velocity of the ball is small. When the rolling friction 
coefficient 77 is small enough, the ball can move towards the 
disk center almost without oscillations [Fig. 5(b)]. When 
the coefficient 77 increases (7 > 0.01 ) or the initial velocity 
increases, the first stage practically vanishes and the am- 
plitude of the oscillations grows constantly. With a large 
coefficient of rolling friction [Fig. 5(c)] the motion goes to 
a more pure case of an unreeling helix. 

Although all results are obtained for a body with spher- 
ical symmetry, the experiments show that the motion of 
bodies with cylindrical symmetry has the same character if 
the following conditions are met. First. the moment of 
inertia with respect to the axis of symmetry has to be an 
appropriate size in comparison with the other moments of 
inertia. Second, the surface of the rolling body must touch 
the disk surface at only one point. The-latter can be pro- 
vided even for a thin cylinder ( a  coin) put on the disk 
surface at a small angle. 

All the described kinds of motion of the body can come 
to an end due to a number of reasons. 

(i) Moving along the unreeling helix, the body will 
reach the boundary of the disk, 

(ii) The motion of a nonspherical (ringlike) body while 
passing the center at a small speed can be transformed in a 
stage not described by the given theory, 

(iii) The regular motioncan be destroyed when the ac- 
celeration lz" 1 of the ball exceeds the maximum static 
friction force 

where g is a free-fall acceleration and k is a static friction 
coefficient (or the difference I FfII - IF, I for a disk with a 
slope, dimensionless units). In this case a slip begins. Thus, 
for a motion along a circle without rolling friction the 
static friction coefficient k must satisfy 

(iv) The roughness of the disk surface is one more rea- 
son for the destruction of the regular motion. Thus, with a 
high enough rate R, even smooth defects of a disk surface 
can result in an essential change in the normal pressure of 
the ball on the surface. This is equivalent to decreasing the 
maximum friction force at this point of the disk surface. 
Given the surface profile h ( x , y )  the appropriate calcula- 
tion can be performed. A small asymmetry of the body 
leads to similar behavior. 

Finally, we note that our experiment qualitatively con- 
firms the theoretical results. The experiments were per- 
formed with a 0.2-m disk with a variable frequency of 
rotation (0.5-2 s-I). Metal balls (3-mm diameter) and 
metal rings (6-20 mm diameter, 1-3 mm width) were 
used. The following phenomena described by the theory 
were observed: 

motions of a ball and of a ring are similar; 

Fig. 6. The time dependence of the kinetic energy of the ball for (a) ~ = 0  
and (b)  1=0.005. 

when the initial velocity of the body is zero it starts to 
drift towards the disk center; 

the influence of the initial conditions increases with the 
increasing of the disk rotation velocity; 

the frequency of the oscillations increases with increas- 
ing disk rotation velocity; 

the character of the path coincides with that obtained 
theoretically. 

A rare person may wonder why the kinetic energy of the 
ball is not conserved while it performs the described mo- 
tion. In fact, the ball loses or gains energy due to the in- 
teraction with the turntable. Nevertheless we found it in- 
teresting to investigate the behavior of the ball's energy. 
The kinetic energy of the ball consists of an energy of linear 
motion and rotational energy. It is given by 

In order to obtain an explicit expression for W as a 
function of time we have to take z as a function of the time 
investigated above, calculate its derivative, and substitute 
z( t)  and i ( t )  into Eq. (4.3). Taking z(t)  from Eq. (2.9), 
we get 
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Fig. 7. Ball motion on the turntable with a board. 

and see that the ball energy oscillates in period with its 
circular motion around some nonzero mean value [see 
Fig. 6(a)]. 

A substitution of Eq. (3.10) into Eq. (4.3) in an attempt 
to treat an effect of RFF on the behavior of the ball's 
energy results in a much more complicated expression than 
Eq. (4.4). That is why we present only a graph drawn by 
a computer for this case [Fig. 6(b)]. Though the graph 
appears to be complicated, it admits a qualitative explana- 
tion. First of all, the figure depicts two stages of the ball's 
motion. While the ball moves towards the center its energy 
decreases though it is subjected to oscillations which have 
the same origin as the oscillations in the case of zero RFF. 
The second monotonically increasing part of the graph 
suggests that the ball has started its motion along the un- 
reeling helix and is accelerated by both friction and "cen- 
trifugal" force. We cannot provide any simple explanation 
for the intermediate region. Note only that the energy may 
nearly vanish in this region. It may happen that the ball 
passes the center of the turntable with a very small velocity 
and almost stops there. At this moment the difference be- 
tween a ball and a ring becomes significant. (In fact it is 
insignificant only if the angular velocity of the ring is large 
with respect to its axis.) A ball will cross the center and 
start an unreeling motion while a ring will fall when it loses 
its energy. 

Doing experiments with a ball and a turntable, we dis- 
covered one final point of interest. If there is a board at the 

edge of the turntable, the ball will move along the board in 
the direction opposite to the rotation of the turntable. Now 
we have enough information to explain this phenomenon. 
We remember that the ball has to perform a uniform cir- 
cular motion, but if it strikes the board it will reflect and 
continue its motion along another circle (see Fig. 7) .  We 
may treat the observed motion as a limiting case of the one 
described. 

V. CONCLUSION 

The theory presented here provides a description of all 
the observed phenomena. It  shows the crucial role of roll- 
ing friction for the motion of the body of rotation towards 
the center of the rotating disk. The theory predicts inde- 
pendence of the following parameters on the rotation ve- 
locity: characteristic time of motion, velocity of drift to- 
wards the center, and the rate of increase of the radius of 
fast oscillations. The predicted properties are observable by 
experiment. 
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