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Ionic transport by migration and diffusion was analyzed theoretically in systems containing three different sons 
of ions where several electrode reactions occur in parallel. The general conditions were investigated under 
which steady-state modes of the process exist, and different cases of control of the process by transport 
limitations were analyzed. 

A number of interesting effects develop when kinetically independent electrochemical reactions occur in parallel at the 
electrode. They are due to interaction of the charged solution components during their transport by migration and diffusion in 
the diffusion layers or in films covering the electrode. They include the migration-current exaltation observed when cations 
and a neutral substance are reduced in parallel [l-3], the correlational migration-current exaltation observed when different 
sort. of cations are reduced in parallel [2-4], as well as the migration effects observed when metal deposition and anion 
reduction occur in parallel [5 ] .  

In the present work we investigate a general three-component system where all charged components can participate 
in electrode processes. For the sake of simplicity, we limit ourselves to the case where all ions (two sorts of cations and one 
sort of anions) are univalent. Another possible case, with two sorts of anions and one sort of cations, can be examined in the 
analogous manner, and the appropriate relations can be obtained when replacing Ψ by -Ψ in the relations to be reported 
below. 
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Fig. 1 .  Scheme of the regions where solutions exist for 
k = ?4 in the plane of j, and j2. 

Fig. 2. Scheme of the mutual disposition of limiting-current 
surfaces I ,  11, and I11 in the space of j, , j2, and j3. 

diffusion equations describing ionic transport in a diffusion layer of thickness L can be written 
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Fig. 3. Correlation of the limiting currents of j l  and j3 for j2 = 0 .  

Fig. 4. Schematic drawing of the projections of level lines j3 = const on the 
surfaces I, II, and III onto the plane of jl and j2: 1) j3 = 0 ;  2) j3 < 0; 
3) 0 < j3 < 2; 4 )  j3 > 2. 

Here c l ,  c2, and c3 are the concentrations of cations of the first and second sort and of the anions made dimensionless through 
co, which is the concentration of anions in the bulk solution; % is the electrical potential in units of RTIF; x is the dimensionless 
coordinate (0 S x S l ) ,  j1,?,3 = i, ,2,3LIFD1 ,2,3c0 are the dimensionless current densities for discharge of the ions, and Dl ,?,3 

are the corresponding diffusion coefficients (j1,2,3 > 0 correspond to ionic fluxes toward the electrode). 'Parameter k in 
boundary condition (5) expresses the fraction of cations of the first sort in the total concentration of cations in the solution 
(0 S k S 1 ) .  

The system of Eqs. ( 1 )  to (5) can be integrated by the method described in [6 ] .  Adding (1) to (3) while allowing for 
the electroneutrality relation (4) and boundary conditions (5) we obtain 

where the notation of 

j= (il+j2+j,) 12 

was introduced. We point out that the condition of c3 2 0 implies that j  5 0 .  
Substituting (6) into (3) we obtain 

Using (8) we can reduce Eqs. (1) and (2) to linear equations for cl(x) and c2(x). Their integration with boundary conditions (5) 
yields 

We shall analyze the conditions under which cl(x) and c2(x) of (9) and (10) are physically meaningful, i.e., when the 
inequalities of cl(x) 2 0 and c2(x) r 0 are satisfied for 0 s x S 1. Because of the condition of j  5 1, the expressions in 
Square brackets in (9) and (10) are not negative. We shall 'first examine the case when j < 1. Then said expression in square 



brackets will always be positive, so that the only limitation to j is that of j # 0. The condition of positive cl(x) and c2(x) then 
is reduced to positive expressions in curly brackets. 

We point out first of all that for x = 1, the two expressions in curly brackets in (9) and (10) are positive. The 
derivatives of both expressions with respect to x have constant signs for j < 1, i.e., they vary monotonically when 0 S x I; 1. 
At first, therefore, cl(x) and c2(x) could basically become zero with increasing j ,  only when x = 0. Hence cl(x) and c2(x) can 
only become zero when x = 0. This implies cl(0) = 0 and c2(0) = 0, which are the conditions where partial limiting currents 
of components cl and c2 are realized. 

The condition of cl(0) = 0 corresponds to the equation of 

Introducing the notation of 

v-f Plil and q=i81(il+ft),  
we can reduce (1 1) to a form where current j3 can be expressed explicitly in terms of 7 and v: 

Relation (13) is defined for 

owing to the condition of j < 1. 
The analogous partial limiting current of cations of the second sort corresponds to the condition of 

Relation (15) is defined for 

owing to the condition of j < 1. 
We call attention to the fact that in the case being considered, the dimensionless current jl should be positive when 

cl(0) = 0 and c2(0) > 0. In fact, negative jl should imply that dqldx in (1) will tend toward - o when c,(O) -+ 0. However, 
this is at variance with the condition of finite a l d x  that follows from (8) for j < 1. It follows that j, > 0 when cl(0) = 0 
and ~ ~ ( 0 )  > 0. We can see in an analogous way that flux j2 should be positive when c2(0) = 0 and cl(0) > 0. 

We shall examine the geometric significance of conditions (14) and (16) in the plane of jl and j2 (Fig. 1) while taking 
into account the inequalities obtained. 

Region I corresponds to realization of the condition (14) with j, > 0; this region is delimited by the negative semiaxis 
of j2 and by the half straight line of 

Region II corresponds to realization of the condition (16) with j2 > 0; this region is delimited by the negative semiaxis of jl 
and by the same half straight line. We stress that the boundaries themselves are not included into the definitions of the regions, 
since all inequalities used were rigorous. 

We shall now examine the case o f j  = 1. In this case it will be convenient to write relations (9), (l0), and (6) for cl(x), 
c2(x), and c3(x) in the form of 



It  is important to notice the following special features of relations (18) to (20). For x tending toward zero, the leading terms 
in (18) and (19) should be the terms which are linear in x. Otherwise one of the concentrations, cl or c2, would have to become 
negative at small x, since it is easy to see that the expressions in the brackets of (18) and (19) are equal in size and opposite 
in sign. It follows that j3 should be larger than two. The condition of j3 > 2 unambiguously yields the inequality of 
j, + j2 < 0, from which it follows that jl and j2 are both negative. In the plane of parameters jl and j2, the region of solutions 
which correspond to the case of j = 1 (i.e., to the totally limiting current) corresponds to the "negative" quadrant (region III 
in Fig. 1). It is readily seen from (18) and (19) that the boundaries of the quadrant are included into region III. 

In addition to the possibilities considered above, a further possibility exists for the problem to have a solution forj  = I, 
viz., the case where the expressions in parentheses of (18) and (19) are zero. This is realized on the straight line (17) separating 
regions I and II. Physically, the condition of (17) is entirely natural, since the conditions of cl(0) - ~ ~ ( 0 )  = 0 are fulfilled 
on the straight line (17) as we go from region I [where (cl(0) = 0 and c2(0) > 0] to region II [where c2(0) = 0 and 
cl(0) > 0]. The coefficients of the terms in (18) and (19) which are linear in x are positive at  jl and j2 which satisfy (17). 

We shall now discuss cases where limiting currents can be attained in the three-component, three-current problem being 
examined. It will be convenient for this purpose to represent the surface defined by relations (13) and (15) in the three- 
dimensional space of j l ,  j2,j3 (Fig. 2). At given values of parameter k, relations (13) and (15) can be described by the surfaces 
of the partial limiting currents which intersect along the straight line corresponding to relation (17) and the condition of  j  = 1. 
It follows from the above investigation, moreover, that the region where the problem has a solution is delimited by the plane 
of j = 1 (III in Fig. 2), which corresponds to the condition of a totally limiting current, 

j= ( j ,+ i2+ j , ) /2=1 .  (21) 

The above investigation of possible steady-state modes of the electrochemical process in a three-component, three- 
current system is the generalization of results obtained in a number of prior papers [l-7]. 

In the simplest particular case when only one sort of ions is electroactive, the state of the system can be described by 
a point located on one of the three axes, jl, j,, or j3, in the three-dimensional diagram shown in Fig. 2, while the case of a 
limiting current with respect to this electroactive component corresponds to the intersection of these axes with the calculated 
composite (I + II + III) threedimensional surface. The point A where all three surfaces (I, II III) intersect corresponds to 
a limiting current j3' = 2 which arises when the anions are the electroactive ions. Essentially, this is the ordinary dimensionless 
limiting current in a binary electrolyte (where the two sorts of species, cl and c2, function as the inactive cations). 

The limiting currents are determined by Eucken's relation [8, 9] when any one of the cations is electroactive; points B 
and C on surfaces I and II correspond to these two cases. 

Next in complexity is the particular case where two sorts of ions are electroactive. We consider first the case when 
these are the anions and one sort of cations (for the sake of definition: c,).  Setting j, = 0 and j ,  < 0 in relation (21) we obtain 
an equation linking the limiting current j3 and the current j l :  

jr-2-j,. (22) 

Relation (22) describes the well-known effect of migration-current exaltation [1-3] seen when cations and a neutral substance 
are reduced (or anions and a'neutral substance are oxidized) at the same time. On the three-dimensional surface (jl, j2, j3)., 
straight line (22) is given by the intersection of plane III with surface II. On the plane of j, and j2, relation (22) is reflected 
by the half straight line AD (Fig. 3). 

It appears that the case where cations are supplied to the electrode in the presence of electroactive anions has not been 
investigated in detail previously. The interrelation between currents jl and j3 corresponding to this case follows from 
relation (13) for v = 0 and q = j3/jl; it is shown in Fig. 3. The section of the curve between points A and B which describes 
the joint reduction of cations and oxidation of anions corresponds to a situation where currents j3 are depressed when jl is 
raised. Cations are reduced while anions appear at the electrode when j3 < 0 and j, > 0. Section BE of the curve corresponds 
to the limiting current for this process. This section describes a process which in its nature is akin to the effect of migration- 



current exaltation, but which is not linear. The absolute value of j3 increases monotonically with increasing jl from the value 
of 2[1 - d(1 - k)] (point B) given by Eucken's relation to arbitrarily large values of jl. 

We call attention to the fact that the limiting current in section AD implies that the concentrations of all three 
components become zero at the electrode, while in sections AB and BE of the curve, only the concentration c l  becomes zero 
at the electrode surface in the limiting-current mode while c3(0) > 0 and ~ ~ ( 0 )  > 0. 

We now shall consider the particular case of j3 = 0, jl > 0, j2 > 0. Plots of jl against j2 and ofj2 against jl which 
correspond to the partial limiting currents with respect to the first and second sort of cations are shown in Fig. 4. Section FB 
of the plot of j, against j2 which will be discussed below, for the sake of definition, corresponds to the function provided by 
the theory for the correlational migration-current exaltation [2, 4]. Section BG corresponds to reduction of cations of the first 
sort occurring while cations of the second sort are generated in parallel at the electrode surface by electrodissolution. It can 
be seen from Fig. 4 that here the first process is suppressed (or depressed) when the rate of the second process increases. 

The case where j3 Z 0 is the generalization of the case discussed above, where it was defined that j3 = 0. It will be 
convenient when plotting the corresponding curves of jl(jd for fixed values o f j3  to write v in terms of 7 and j3 with the aid 
of relation (13): 

Picking some value of 7 in (23) one readily finds the corresponding value of v ;  then one finds jl and j2 from (12). Plots of j, 
against j2 obtained in this way for a number of values of the parameter j3 are shown in Fig. 4. It is important to note that the 
shape and position of the curves substantially depend on the sign of (j3 - 2). The curves are similar to that for the case of 
j3 = 0 when j3 < 2. They start on the half straight line AD, intersect the axis of j l ,  and asymptotically tend toward the 
negative semiaxis ofj2. However, the curves corresponding to j3 > 2 issue from points defined by the condition of 
j2 t j3 = 2; they also tend asymptotically toward the negative semiaxis of j,. 

The plots of j2 against jl defined by relation (15) with fixed j3 are analogous. We must point out in addition that for 
jl < 0 and j2 < 0, the relation between jl and jz which corresponds to a totally limiting current in the system is given by 
relation (21), and can be pictured as shown in Fig. 4 by the straight-line segments uniting the points from which the plots of 
j,(j2) and j2(jl) issue when j3 > 2. 

Thus, it is readily seen that the curves shown in Fig. 4 are the projections of level lines on the composite surface of 
limiting currents, I + I + III, in the three-dimensional space pictured in Fig. 2. With a value of 0.5 for parameter k, this 
surface is symmetric relative to the plane of jl = j2. This symmetry is upset when parameter k assumes different values; then 
the position of plane III remains unchanged, but half straight line AF changes in its slope relative to the coordinate axes. The 
"steepness" of surfaces I and II changes at the same time; surface I becomes less steep, and surface II becomes steeper with 
increasing k. 

It had been assumed in the above analysis that generally, all three ion types could be electroactive. We shall discuss 
in more detail possible cases of electrode processes involving said ions. 

Suppose that a single electrode reaction involving all three components occurs in the system: 

~ ~ A ~ + + v ~ A , + + v ~ A , - + n e = 0 .  (24) 

Then the fluxes of these components should be interrelated via the stoichiometric coefficients and the two linear relations 

j 2 1 j l = ~ t l ~ I = ~ ;  i31(i,+ja)=v31(~I+Va) =q. (25) 

In the space of j l ,  j2, j3, relations (25) define a straight line issuing from the coordinate origin. Depending on the values of vi ,  

it may or may not intersect with any one of the surfaces I, II, and III. When an intersection occurs, this implies that a limiting 
current arises in the system because one of the conditions: cl(0) = 0, ~ ~ ( 0 )  = 0, or c3(0) = 0, is fulfilled. When intersections 
are lacking, this corresponds to a system where the current can assume any value. We point out that, if some substance is the 
product of the electrode process, i.e., has a negative stoichiometric coefficient, it will not be able to limit the overall process. 
Generally, a limiting current is not assured to occur in the system when just one of the stoichiometric coefficients is positive. 
For instance, when v l  = v2 = - 1 and v3 = 1, the corresponding straight line does not intersect with any of the surfaces I, 
II, and III. 



When a limiting current exists in the system, i.e., when the straight line intersects with one of the surfaces (I, II, 
or III), the value of this current can be found from one of the relations corresponding to the loci of points of intersection 
between the straight line and the surfaces: (13), (15), or (2 1), where relations (25) are used for v and q .  

Consider now the case when two electrode reactions occur in the system, one of them involving any two sorts of 
electroactive ions and the other producing the third sort of ions. Here the fluxes of the two components involved in the first 

are mutually proportional, which geometrically, in the space ofj,, j2, j3, corresponds to some plane P passing through 
one of the coordinate axes. This plane generally intersects with two of the three surfaces I, II, and III. Plane P will cross the 
axis of jj when the ions involved in the reaction have the same sign. Then it intersects with plane III and either the surface I 
or the surface II (in which case the limiting-current situation is similar to that pictured in Fig. 3), or it intersects with the 
surfaces I and II but not with III (in which case the limiting-current situation is described by two branches looking like the 
nonlinear sections ABE of the curve in Fig. 3). 

Plane P crosses the axis of jl (or of j2) and intersects with surfaces I and II, in certain cases even with plane III, when 
ions of different sign are involved in the reaction. Plane P may then either intersect with the half straight line AF or intersect 
with its extension in the plane III, or it may be situated parallel to the half straight line AF. In the last two cases, a region exist 
where the currents jl and j2 can have any (positive) value while currents j3 can increase to any value. Here we can draw an 
analogy to the migration-current exaltation in a more complex system where two reactions occur in parallel and two solution 
components are involved in one of these reactions. We remark that, when jl and j2 are negative, j, , j2, and j3 can always 
assume whatever (absolute) value. 

In a system where two electrode reactions occur which have reactants in common, the state of the system can be 
characterized by a plane P the position of which depends on the values of the stoichiometric coefficients of these reactions, 
and which by necessity passes through the coordinate origin, of j, = j2 = j3 = 0. The resulting admissible regions where the 
reactions can occur under limiting-current conditions, are defined by the intersections between plane P and the surfaces I, II, 
and III; they are qualitatively similar to those described above. 

Finally, in the general case when three parallel reactions occur in the system, the surfaces I, II and III themselves 
constitute the boundaries for the admissible partial currents j l ,  j2, and j3. For a specific system of three parallel electrode 
reactions, surfaces of this sort have been analyzed in [10]. 

Thus, the above analysis provides a generalized picture for the limitation of electrode processes in three-component 
systems by diffusion and migration when several (generally coupled) electrochemical reactions occur. 
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