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An analytical solution o f  the electrodiffusion problem was obtained for systems with arbitrary ionic charge 
where cation reduction occurs in parallel with a process of anion reduction involving hvdrogen ions and 
producing another kind of anions. The conditions were analyzed where limiting currents can be attained 
for the first and second process, and the regions of admissible currents were defined where the two 
processes can occur in parallel in a steady mode. 

When electrode processes occur in parallel in systems lacking base electrolyte, one of them may influence another 
at the stage of reactant transport by diffusion and migration in the diffusion layer. This influence may be unilateral, as 
e.g. in migration-current exaltation [1 ,  2], o r  mutual, as e.g. in correlational exaltation of the migration currents [3]. 
This influence generally can produce both a n  increase (exaltation) and a decrease (depression) of the limiting current 
of a first reaction on account of a second process occurring in parallel. 

In [4], electrodiffusion problems were analyzed in systems where metal electrodeposition occurs in parallel with 
anion reduction in acidified solutions. Schemes were examined where hydrogen ions are involved and a neutral substance 
is produced in the reaction in which the anions are  reduced. This  analysis was generalized in [5] to the case of neutral 
anion reduction products in systems with arbitrary ionic charge. 

In the present work we describe the analytical solution fo r  a system with arbitrary ionic charge where the metal 
cations are reduced in parallel with a process involving hydrogen ions in which the anions are reduced and another kind 
of anions is produced. 

An example of such processes is the reduction of copper in nitrate solutions at solid electrodes: 

when the NO,- ions are reduced according to the scheme of 

The general scheme of processes of this type where reduction and the anions being reduced have identical charge [sic] 
can be written as 

.\;I- -+ . \ * o  ; , (3) 

Here suffixes 1 to 4 correspond to the ions of the metal being deposited, to the cations involved in the second reaction, 
to the anions being reduced, and to the anions being produced; Aizi is the symbol for the corresponding component, Bin 
are the neutral products of reaction (4), p is the stoichiometric coefficient, and 3, is the charge of the corresponding ion - - 
(with z3 = z4).  
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The system of electrodiffusion equations which describes the scheme of (3) and (4) is given by 

dc, - dij, -1 i ,L -- z,c, - = - - 
dx dx p f 2  FD,cO ' 

Here ci are the corresponding concentrations made dimensionless through concentration co of the metal ions in the bulk 
solution, Di are the corresponding diffusion coefficients, $J = F E I R T  is the dimensionless potential, x  is the dimensionless 
coordinate (0 < x < L), L is the thickness of the Nernst diffusion layer, and j l  > 0 and j2 > 0 are dimensionless currents. 
At the limits of the diffusion layer the values of potential and component concentrations are given as 

We take into account that the diffusion coefficients of the original and resulting anions are sufficiently close so 
that D3 = D4. Moreover, to simplify the notation we shall introduce relative charges zl and z2 and the relative potential * 
defined as 

Quantities z l ,  z2 ,  and ?Tr coincide with the common quantities when z3 = 1, which is true in particular in the scheme 
of (1) and (2). 

Using (1 1)  we can rewrite Eqs. (5) to (9) as 

dc1 d Y  - + z lc l  - = jl, 
d z  dx 

(12) 

dc, d Y  -- c,-= - j 
dx dx 

2,  

where the parameter v = pD3/D2. Combining (14) and (15) and introducing the notation of 

we obtain the equation 

The system of Eqs. (12), (13), (16), and (18) with boundary conditions (10) describes the correlational exaltation 
of migration currents. It has been analyzed in detail in [3]. Following the solution scheme described in [3] we obtain 
below a solution for c l ,  c2, c5, and 1Ir, and then find concentrations c3 and c4 by using Eqs. (14) and (16). 

Using linear combinations of the Eqs. (12) to (16) we can write quantity dxld1Ir in terms of component 
concentrations, thus: 



Substituting (19) into Eqs. (12) and (18) and changing to the new independent variable 9 ,  we obtain a system of two 
linear first-order equations for cl and cs. We shall seek a solution of this system in the form of c -~exp (A@). The 
resulting equation for the characteristic values X has simple solutions; one of them is unity, the other 

where J = vj2/jl  is the flux ratio of the second and first kind of cations. The profiles of concentrations el and cs can 
be found as linear combinations of the exponentials obtained. Allowing for boundary conditions (10) we can write them 

cj= (zl+kz2) e"'. (21) 

Concentration c2 can now be found from (21) and (22) and the electroneutrality condition (16). Thus, cl, c2, and cs have 
been determined as functions of potential g. 

To find these concentrations as functions of coordinate x we must write the latter in terms of potential Q. 

Substituting (21) and (22) into (19) we obtain 

where A and B are constants which are independent of Ψ and x: 

(zl-z2) [k(z2+1)-1(~,+1) ] 
B -  

(I+]) [z, (1+z2) -12, (l+z,) ] ' 

Integrating (23) while allowing for the boundary condition (10) we can define the implicit coordinate dependence of 
potential as 

We change to the independent variable Ψ in (14) in order to find the individual distributions of concentrations 
cs and c4 (not merely that of their sum, cS). Substituting (23) into (14) and integrating while allowing for  (10) we obtain 

The expression for c4 is obtained from (17), (27). and (21). Thus, through the parameter \E concentrations cl, c2, CQ, and 
c4 were found as parametric functions of coordinate x for arbitrary values of currents jl and j2. 

We shall now analyze the limitations imposed upon currents jl and j2 because of the possibility that the 
concentrations of individual solution components become zero at the electrode. Setting x = 0 in (26) we find an equation 
which defines the value of potential, Ik,, at the electrode: 

Under the condition of cl(x=O) = 0 which corresponds to the partial limiting current with respect to the metal ions, and 
eliminating Qo with the aid of (22) and (28), we find a relation linking quantities jl(') and J: 



Here and in the following, the superscripts in jl(') and j2(') indicate that the current is defined for the condition of 
ci(0) = 0. The link between the currents in the case where the condition of c2(0) = 0 is realized at the electrode can be 
obtained in a similar way: 

It follows from (27) that the condition of c3(0) = 0 leads to the following link between J and Qo: 

which generally does not admit an analytical expression for Qo in terms of J. After finding Qo from this equation by 
numerical solutions for given values of parameter J we can calculate the current j1(3) from (28). 

Finally consider the limitations imposed upon the currents through the condition of c,(x=O) = 0. In this case 
concentration c, near the electrode should be a rising function, i.e., it should have a positive derivative 
(dc,/dx 1 ,o > 0). The quantity on the right-hand side of (15) will be negative because j2 is positive. This is feasible 
only when the migration term in (15) always remains an essentially negative quantity, which for c, -, 0 is possible only 
when dQ/dx -+ +w. It is easy to see that the latter condition can be satisfied only when in addition to c4 -+ 0 all other 
concentrations (cl, c2, and c3) become zero at the electrode at the same time and Q -+ -00. Therefore, relative to the 
limitations already discussed, the condition of c,(O) L 0 imposes no additional limitations on the limiting currents in the 
system. 

We point out that relations (23) to (26) had been obtained in [3] in a slightly different form, while relations (29) 
and (30) have been reported in [3]* in the form of an implicit connection between jl and j2 which, for the construction 
of functi~nsj~('*~)(j~(~~~)), would require numerical solution of the equations for j1( 'e2)  at a number of fixed values of 
j 2 ( ' s 2 ) .  In the present work we use a parametric specification of these functions in terms of the independent parameter J, 
viz., j1('l2) = j1(l12)(~) and j 2 ( l I 2 )  = J / V . ~ ~ ( ~ * ~ ) ( J ) ,  allowing these curves to be constructed directly. 

Curves of j1(')(j2(')) corresponding to the conditions of ci(0) = 0 and i = 1, 2, 3 are shown in Fig. 1 for a number 
of values of the dimensionless parameters employed. 

The curve j1(l)(j2(l)) starts at j2(l) = 0 from a point N corresponding to the generalized Eucken relation for the 
case of arbitrary ionic charge [6], and ends at point Q with the coordinates jl = zl + I ,  j2 = (z2 + I)k/u where it is joined 
by the analogous curve of jl(2)(j2(2)) issuing from point M. Here the curves j l ( l ) ( j2( l ))  can either rise (Fig. la) or have 
a minimum, and point Q can be located, both above (Fig. lb) and below (Fig. Id) the point N. Explorations showed that 
point Q will be below point N under the conditions of 

We point out that in [3] only the possibility of a monotonic rise of j,(')(j,(')) was described. 
The behavior of function j1(3)(j2(3)) proved to be not at all trivial. Plots of this function have two branches 

separated by a cusp W. Point W generally can be located, both above (Figs. l a  and Ic) and below (Fig. Ib) the line of 
jl(l)(j2(l)). Then curves jl(l)(j2(l)) and j1(3)(j2(3)) either have two points of intersection or they do not intersect. Point R 
of intersection of the curve j1(3)(j2(3)) with the horizontal axis of j2 can be further to the left (Figs. 1b and lc) and 
further to the right (Fig. l a )  of the point M where curve j1(2)(j2(2)) intersects with the axis of j2. SO that curves 
j1(3)(j2(3)) and j1(2)(j2(2)) either intersect in a single point or they do  not intersect. Finally, for Qo -. -00 all three curves 
of j1(')(j,(')) merge in point Q, while it can be shown that curve j1(3)(j2(3)) is below the curve jl(l)(j2(l)) but above the 
curve of J = k(r2 + I)/(zl + 1). 

Values of currents jl and j2 which satisfy the conditions of ci(0) 2 0 are those in region I of Figs. l a  and lc  
including the coordinate origin, and in addition those in region I I .  When point W is below the curve jl(')(j2(l)) (Fig. 1b), 
the resulting region of physically realizable currents is simply connected. The additional region I I  which arises when W
is located above the curve jl(l)(j2(l)) is physically realizable in principle but cannot be reached by gradually increasing 
the currents j1 and j2 starting from zero; it can only be reached from a transient state. 

*we point out that in the relations of [3] which correspond to relations (24) to (26) and (29) of the present work, 

misprints exist in the symbols for the indices of charge which are eliminated in the present paper. 



Fig. 1. Situation of curves jl(')(j2(')) in the plane ( j z ,  j l )  in the case of u = 0.2: 
I )  j1(l)(j2(')), 2) j,(2)(j2(2)), 3) j1(3)(j2(3)); (a) z, = 2, z, = 1, k = 0.3; (b) z, = 4, z, = 2, 
k = 2 ;  (c) zl = 2 ,  z2 = 1, k = 2 ;  and (d ) z l  = 1, 2, = 2, k = 2.5. 

Fig. 2. Relative positions of curves in the 
plane (j,, uj,): I )  curve corresponding 
to (42), 2) curve corresponding to (39), 
3) curve corresponding to (40). 4) curve 
corresponding to (41) when inequality (43) 
holds, and 5) curve corresponding to (41) 
when inequality (43) does not hold. 

In the case of zl <-i2 the relative disposition of curves jl(i)(j2(i)) is as shown in Fig. 1d. Here curve j1(3)(j2(3)) 
has a single branch issuing from the point R, and asymptotically approaches to the axis of j,. We notice that for zl < z2, 
again cases are possible where the point R is located further to the right or left of point M, and where point Q can be 
located above or below the point N. 

In conclusion, we shall discuss the chief results of the above investigation. When cation reduction occurs as the 
only process at the electrode and j, = 0, the condition of cl(0) 2 0 defines the region of discharge currents 
j1 5 jl(u(j2=0) which is physically realizable, i.e.. the current should be smaller than o r  equal to the limiting diffusion 
and migration current. When anion reduction according to scheme (4) is the only process that is realized at the electrode 
and jl = 0, the physically realizable values of current are determined by the conditions of c,(O) 2 0 and c3(0) 2 0 
(exploration showed that the condition of c,(O) I 0 does not give rise to any additional limitations). Depending on the 
values of parameters u, k, tl, t2, and t 3 ,  a limitation of the current of process (4) in the absence of process (3)  is 



possible, either on account of the condition of c2(0) = 0 or on account of the condition of c3(0) = 0. In the first case 
concentration ~ ~ ( 0 )  decreases with increasing current, and at c2(0) = 0 we have c3(0) > 0 and j2 = j2(2). In the second 
case the decrease in concentration c3(0) is faster than the increase in current j2. and at c3(0) = 0 we have ~ ~ ( 0 )  > 0 and 

(3). j2 = J2 
The situation regarding the values of currents which are accessible becomes much more complicated when 

processes 73) and (4) occur simultaneously, which is due to the mutual influence produced by migration of the 
components. It can be said in general that the region of accessible currents in the plane of (j,, j,) is defined by the set 
of conditions ci(O, jr, j2) L 0. The above investigation has shown that this region can be simply or multiply connected, 
i.e., it can consist of two (or more) nonoverlapping regions. 

Curves jl(i)(j2(i)) which correspond to the links between the currents of processes (3) and (4) under conditions 
where ci(0) = 0 and constitute the boundaries of the region of physically realizable currents can have falling and rising 
sections. These sections can be interpreted as a manifestation of local "depression" and local "exaltation" of the migration 
current when the limiting value of one of the currents decreases or increases because the other current has been 
increased. 

We point out that owing to the complex behavior of curve j1(3)(j2(3)), three values of the limiting current for 
process (4) may exist in the system within a certain region of prelimiting currents j, for process (3) (the dashed line in 
Fig. Ib). This is due to the fact that concentration c3(0) when considered as a function of current j, at fixed values of 
the current jl has nonmonotonic behavior. One of the possible values of the limiting current j2(3) (the central one) can 
be attained only when coming from higher currents, which is quite unexpected. 

Thus, the above analysis has shown that depending on the parameters involved, effects of an exaltation or 
depression of the migration current may be displayed when processes (3) and (4) occur in parallel. 

In conclusion we wish to discuss the particular case of z, = z2 where B = 0. Equation (31) for Qo has a single 
root Qo = -AJ/u(z1 + kz2), from which upon substitution into (28) o n e  can find an explicit parametric expression 
for jl(S). 

Moreover, in cases where all ions have the same charge one can find the distributions of all concentrations, 
directly from (12) to (16). Combining (12) to (15) and integrating while allowing for (16) we obtain for c3 + c,: 

where y = 1 + (j ,  + uj,)(x - 1)/(2 + 2k) L 0 is a linear function of x. With the aid of (18) we hence find dlk/dx: 

Substituting (34) into Eqs. (12) to (15) we can integrate the linear Eqs. (12) to (15), and obtain the concentration 
distributions ci(X), with i = 1 to 4, in an explicit form: 

c l (x)=[ j l (x- l )  ( 1 + ~ ) / 2 + 1 ] l y ,  (35) 

Setting ci = 0 for x = 0 in (35) to (37) we obtain expressions for the corresponding partial currents: 

The function j1(3)(uj2(3)) defined by relation (41) is shown in Fig. 2. For j2 = 0, curve j1(3)(uj2(3)) issues from the point 
of j, = 2(1 + k) tangent to the straight line 



At j, = 0, the curve j1(3)(vj2(3)) terminates in the point vj, = 2(1 + k)[l - exp (-v/2)]. This point can be located, both 
to the left and to the right of the point vj, = 2(1 + k) - 2 J m  from which issues the curve (40). In the former case, 
which is realized when 

curves (40) and (41) do not intersect, and the joint reduction of anions and metal cations can be limited only via 
conditions (39) and (41). In the second case when a condition which is the opposite of (43) holds true, curves (40) 
and (41) intersect and three possibilities exist for limitations of the resultant process, which correspond to the 
conditions (39) to (41). The maximum current of metal ion reduction is always found when conditions (40) and (41) are 
fulfilled simultaneously. 

We notice that the left-hand side of inequality (43) depends through the parameter k on solution composition 
only, while the right-hand side through the parameter v depends, both on the stoichiometry of reduction reaction (4) 
and on the ratio of diffusion coefficients of the anions and cations. 

Thus, the maximum partial current of metal electrodeposition is between a lowest value of 
j, = 2(1 + k) - 2 4 1  + k)k] and a highest value of j ,  = 2. This result arises from the joint effects of a lowering of the 
limiting current of metal ion reduction which occurs when a second kind of cations are added to the system, and of a 
correlational exaltation of the migration current [2, 4] which leads to a higher limiting current of cation reduction. 
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