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The paper is concerned with the problem of calculating the limiting diffusion and migration currents in 
partly dissociated electrolytes. The limiting currents were investigated as functions of the equilibrium 
and rate constant of dissociation. Approximate analytical calculations of the limiting currents and a 
numerical solution of the problem were achieved. 

In [1]  the dependence of limiting diffusion and migration currents on the equilibrium constant of a partly 
dissociated electrolyte was investigated. It was assumed that the rate constants of dissociation and recombination are very 
high so that throughout the diffusion layer the concentrations of the cations (c1), anions (cz), and undissociated molecules 
(c3) were related by the equilibrium condition of 
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where /3 is the dissociation equilibrium constant, vl and v, are the stoichiometric coefficients, which coincide with the 
charges, z, and z,, of the cations and anions when these are simply related (have no common divisors). Ionic transport 
in systems with chemical equilibria was studied in [2-9]. 

In the present communication we examine the problem of calculating the limiting currents in partly dissociated 
electrolytes in the more rigorous formulation where the assumption of equilibrium (1) is not used. 

The system of electrodiffusion equations describing discharge of cations in solutions of a partly dissociated 
electrolyte AU1Bu2 can be written in the form of 

Here Dl, D2, and Ds are the diffusion coefficients of the cations, anions, and neutral molecules, \Ir = FE/RT is the 
dimensionless potential, i is the current density of cation discharge, F is the Faraday constant, n is the number of 
electrons transferred in the electrode reaction, R is the gas constant, T is the temperature, and K is the dissociation rate 
constant. 

At the diffusion layer boundary of x = σ the equilibrium concentrations are defined as 

The equilibrium concentrations cI0 and csO can be related to the total concentration of substance AV1Bu2 in the solution 
and the equilibrium constant p through' 

Combining (7), (8). and (9) we obtain an equation defining the function c10(/3): 

Substituting the solution of Eq. (10) into (8) and (7) one can determine the equilibrium concentrations contained in ( 6 ) .  
The system (2) to (5) must be supplemented by the condition of 

while in calculating the limiting currents one must demand in addition that 

The calculations performed in [1] which were based on a solution of system (1) to (3) and (5) with the boundary 
conditions (6), (1 1), and (12) correspond to the limiting case when the dimensionless parameter I = ~.3/K6'  tends toward 

zero so that Eq. (4) at all 0 < x < σ can be replaced by (1). 
We shall examine the solution of the system (2) to (6), ( 1  1), (12) for small but finite values of parameter &. It 

follows from the condition of local electroneutrality (5) and the Eqs. (2) and (3) that 



We change to the dimensionless variables 

where for combinations of the parameters the following symbols were introduced: 

Integrating (15) we obtain 

aF,+Fs= Iy+ b. 

Using the conditions (18) one can conclude that $0) = b, and using conditions (17) we have 

where 

Quantity I. is the expression for the dimensionless current in the case where E = 0. In fact, setting E = 0 in (16) and 
using (18) we find that I = I0. Quantity b can be used in two capacities at the same time, viz, as the dimensionless 
concentration of undissociated substance near the electrode and as the correction to the dimensionless current I, at 
small ε. AS shown above one has b -+ 0 when ε --, 0. 

Our problem is that of calculating I for E *c 1. Since Eq. (16) is nonlinear and has the small parameter as factor 
in front of the highest derivative, we can interchange the dependent and independent variable so that all terms of 
Eq. (16) become terms of the same order of magnitude [10]. Suppose that < = Y/& It follows from (19) that when y is 
of the order of f i t h e  concentration sum a;, + 5 ,  also is of the order of 6 

We shall seek the solution of Eq. (16) in the form of 

where Z(<) and U(<) are functions of the order of unity. It follows from the conditions (18), (19) that b is of the order 
of Neglecting terms of the order of E ~ / ~  in relation (19) we obtain an approximate expression for function U: 

U(t;)=Ifla. (23) 

Substituting (22) and (23) into (16) we obtain an equation for function Z: 

d2Z It; "' - = z-~(,) 
d;= 

with the boundary conditions 



The general solution Z(g) of the homogeneous Eq. (24) is 

Z=A exp (-c) +B exp ( 5 ) .  (26) 

The partial solution Z of the inhomogeneous equation can be found by the method of variation of the constants. Adding 
the general solution of the homogeneous equation and the partial solution of the inhomogeneous equation we can obtain 
a general solution of the inhomogeneous equation that satisfies the condition of Z'(0) = 0 in the form of 

where L = O . S ~ ( I / ~ ) ~  and r (m t 1) is the gamma function. From (27) and the second condition in (25) we find the value 
of b = ~ * / ~ 2 ~ I ' ( r n  t I) which, when it is substituted into (20), yields an equation for I: 

On the right-hand side of (28) one can neglect the small difference between I and I,,, and write an approximate 
expression for the dimensionless current in the form of 

Thus, at small values of parameter f i  i.e., high dissocation rates, the limiting diffusion and migration current 
is depressed in proportion to ~(V1+*2)/2. 

We now turn to the opposite limiting case of E >> 1 (low dissociation rates). We shall seek the solution for El in 
the form of 

where u and v are functions of the order of unity. Substituting this expansion into (16), allowing for (15), and equating 
the terms in E we obtain 

Hence after satisfying the boundary conditions (17) and (18) we obtain the major part of the solution for 2,: 

For the purposes of finding v we equate the terms not containing E, and substituting (32) we obtain 

In deriving (33) we additionally allowed for relations (19) and (20). Function v satisfies the homogeneous boundary 
conditions of 

Integrating (33) while allowing for (34) we obtain 

This expression, with the condition of I = dzl/dy I ,=o, yields an expression for the flux in the case of low dissocation 
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Fig. 1. Plots of cation concentrations el against dimensionless distance y 
for zl = 2, z2 = 1, ε = 0.1, and different values of B: 1) 0.01, 2) 0.1, 3) 1, 
4) 10, and 5) 100. 

Fig. 2. Plots of cation fluxes to the electrode as functions of log for 
different values of ε: 1) 0.02, 2) 0.1, 3) 1, and 4) 10. 

rates (E >> 1): 

Function I(B) defined by (36) is a monotonically falling function. 
For a number of intermediate values of a the system of Eqs. (15) to (18) was also solved numerically by the 

Runge-Kutta method and by an optimized search procedure for values of I satisfying the boundary conditions. As an 
illustration of the numerical solution obtained for the problem, the concentration distributions e l  in the diffusion layer 
are shown in Fig. 1 for fixed values of parameter E and widely varying values of the parameter j. Figure 2 shows 
functions I(log $) calculated by numerical solution of the problem for a number of values of parameter E. 

It follows from the numerical calculations and from the results of the approximate analytical solution of the 
problem that as parameter E increases the limiting current of cation reduction decreases. 

It thus can be seen from the above investigation that the limiting currents in partly dissociated binary 
electrolytes depend, (i) on the rate constant of electrolyte dissociation and (ii) on the dissociation equilibrium constant. 
The analytic relations (29) and (36) obtained for the limiting current in the cases of large and small (E >> 1 and E << 1) 
rate constants of electrolyte dissociation allow the dissociation constant p to be determined from experimentally 
determined values of 1 and ε. In the case of intermediate ε-values the family of curves I(1og j) obtained by numerical 
solution of the problem can be used for a determination of p. In the limit of ε -. 0 the calculated function I(B) changes 
to the relation obtained for I in [1]. At low values of the dissociation rate constant (ε >> 1) the limiting diffusion and 
migration currents are chiefly determined by the equilibrium concentration of electroactive cations in the solution. 

We point out in conclusion that by varying the concentration c0 in the solution one can vary the value of 
parameter B which is proportional to (CO)~-', while parameter ε is independent of cO. In principle, therefore, one can 
find the dissocation rate constant K and the equilibrium constant B by comparing the experimental relations between 
limiting currents and concentrations c0 with the calculated curves of I(log j )  for different values of E .  

The authors thank M. A. Vorotyntsev for useful discussion of the work. 
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