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Abstract-Theoretical investigation of potentiostatic electrolysis of a metallic salt in three component 
electrolyte solution was carried out for a cell consisting of two identical parallel electrodes. Analytical and 
numerical results are given for polarization curves for electrochemical cells with arbitrary values of trans- 
fer coefficient LY and exchange current density. Theoretical analysis of the electrodiffusion problem, based 
on an exact solution of the Nernst-Planck equations with boundary conditions of Butler-Volmer type, 
led to a formula for the polarization curve that is similar to the Tafel equation but with an effective 
transfer coefficient αeff = a(l - α). It was shown that, under certain conditions, the polarization curve can 
have two inflection points. 
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INTRODUCTION 

In a recently published paper [l], a theoretical inves- 
tigation of potentiostatic one-dimensional electro- 
lysis of a metallic salt in a three-component 
electrolyte solution was carried out for an electro- 
chemical cell having two identical parallel electrodes. 
The analysis led to  an exact solution of the system of 
Nernst-Plank transport equations accounting ion 
transfer by diffusion and migration mechanisms [2- 
5 ] .  The polarization curves were derived in para- 
metric analytic form for the special case where the 
transfer coefficient a in the Butler-Volmer law is 
equal to 0.5 and for an arbitrary concentration of 
supporting electrolyte. 

Qualitatively, the polarization curves found in [1] 
for α = 0.5 were similar to  those found for a wide 
class of different systems in which ionic diffusion and 
migration transport were analysed at the surface of 
one electrode [6-10]. In particular, polarization 
curves of this type were studied in recently published 
papers [11-16]. On  the other hand, for z # 0.5, one 
may expect effects on the current-voltage curve due 
to the asymmetry of the reaction. In this paper, this 
issue is examined in some detail for arbitrary values 
of the exchange current density. 

1. Problem statement 
Consider a binary electrolyte with ionic charge 

numbers z l  and z2 for cations and anions, respec- 
tively. The following reduction reaction occurs at the 
cathode : 

At the anode the same reaction proceeds in the 
opposite direction. We shall analyse the current- 
voltage characteristic of the cell assuming that there 
is no convective motion of the electrolyte in the 
space between electrodes, and that ionic transport 
takes place owing to diffusion and migration in the 
P,-direction, which is perpendicular to  the elec- 
trodes' surfaces at X = 0 (cathode) and X = L 
(anode). 

Let the cathode electric potential be equal to  0 
and the anode potential equal to V. We shall assume 
that there is no redistribution of the electric potential 
UJ in the diffuse double layers during current flow. 

In the case of dilute electrolyte, the Nernst- 
Einstein relation for the diffusion and mobility coef- 
ficients can be used. The concentrations of cations 
and anions, C ,  and C , ,  respectively, and the electric 
potential @ can then be computed from the following 
system of equations: 

Here Dl  is the diffusion coefficient for cations, F is 
the Faraday constant, R is the gas constant, T is the 
absolute temperature, and i is the electric current 
density. 

From the Butler-Volmer law, the electric current 
density can be expressed in terms of overpotentials 
for electrode reactions, which are @(0) and V - @(I) 



for the cathode and anode, respectively: 

In these formulae, i, is the exchange current density, 
for a concentration of cations equal to Cy, and a is 
the transfer coefficient. 

Taking into account that the reactions at anode 
and cathode have equal rates, conservation condi- 
tions for Cl  and C2 may be written in the form 

C, dX = c: L, m = 1,2, (6) 

where C: are the initial (homogeneous) concentra- 
tions of species in the electrolyte. 

Equations (2-6) can be written in dimensionless 
form in terms of the coordinate x = X/L, the con- 
centrations c, = C,,,/C:, (m = 1, 2) and the electric 
potential 4 = F@/RT: 

The boundary conditions (4-5) can be written in the 
form 

where j = -iL/FDIC:, j, = i, L/FDIC: and 
u = VIRT. 

For the normalization conditions (6), one obtains 
the following expressions 

6' Z I  cl dx = 1, LC, dx = -. 
z2 

(12) 

Integration of equations (7-9) after consideration 
of the conditions (12), gives the following expressions 
for the concentrations: 

From equation 8, for example, one then finds the 
expression for the total potential drop in electrolyte: 

where 
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J L 

and 

j' is the dimensionless limiting diffusion-migration 
current in the cell, corresponding to the condition 
cl(0) = 0. 

Rewriting the boundary conditions (10-11) by 
using expressions (14-16) one obtains the following 
two relations between &O), v and j :  

and 

Elimination of 4(O) from these expressions leads to 
an implicit expression for the polarization curve j(v). 
A convenient form is obtained by solving for eaHO), 
which gives the following result 

Substitution into relation (18) then gives 

Expressions (21) and (20) define j as an implicit 
function of v.  

2. Analysis of some limiting cases 
2.1. For small values of j and v, expansion of expres- 
sion (20) gives, to the lowest order, that 

Substitution of this expression into expression (21) 
gives the explicit linearized form of the polarization 
curve 

Thus, the slope of j(v) curve at small values of v 
depends on the ratio between j, and j l .  In the case of 
j, < j' expression (23) may be written in the form 
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and in the opposite case, ie j, % jl, as mately determined by the relation 

jzj' ZlZ2 

2(z1 + 2,) u. 

2.2. Consider now the case of small values of j,. 
Assuming that the values of v such that j, 4 j(v) - j1 
are of the order 10'-10' or larger, one obtains from 
expression (20) the approximate relation 

For E % 1, one then finds from expression (21) that 
the polarization curve is given by the following 
approximate expression 

This result shows that for values of j that are not 
too close to j 1, he polarization curve j(v) can be rep- 
resented as a Tafel-like law with the effective transfer 
coefficient 

αeff = a(l - α). (28) 
The maximum value of αeff is equal to 0.25 and the 
dependence of j(v) on a is symmetrical with respect 
to α = 0.25. Again, it should be stressed that this 
symmetry property is valid for small j, values only. 

2.3. For j, -g j(v) - j1 formula (27) simplifies to 

A comparison between formulas (24) and (29) 
shows that in the transition region from the linear 
behavior of j(v), which is independent of α, to the 
exponential one, there is an inflection point for 
values of α larger than 0.5. This inflection point is 
similar to that of the current-voltage curve for the 
reaction at one electrode, which is described by the 
Butler-Volmer law. For j, 4 1 and j, + j < jl one 
then has 

The position v = o,, say, of the inflection point in 
this case can be readily computed and one finds that 

It turns out that this expression can also be used 
as an estimate of the location of one of the inflection 
points of the polarization curve for the cell with two 
electrodes. The closer α is to 1, the higher is the accu- 
racy of equation (31). 

The second inflection point of the polarization 
curve is found in the region of high values of v where 
the current limitation due to diffusion and migration 
becomes important. 

2.4. For high values of the exchange current density, 
j in the left hand side of expression (21) can be 
neglected and the polarization curve is approxi- 

where E(o) is given by expression (20). This relation 
is, of course, invalid when j is very close to the limit- 
ing current density. 

3. The role of the supporting electrolyte in a system 
with three species 

In the presence of a supporting electrolyte, the 
system of dimensionless equations for the concentra- 
tions and distributions of electroactive cations, indif- 
ferent cations, anions and the electric potentiai 
distribution reads as: 

In these equations, the dimensionless concentrations 
are defined as 

and the electric current density is normalized accord- 
ing to the relation j = -iL/FDIC!. It turns out to 
be convenient to introduce the parameter k = 
Cy/C!. Then, 

The case of the aqueous solution of CuSO, with 
H2S04 as a supporting electrolyte will be considered 
below. In this case at relatively low H2S04 concen- 
trations H,SO, dissociates mainly into H +  and 
HSO; and, correspondingly, z ,  = 2, z, = z3 = 1. 

For the three-component system under consider- 
ation, the dimensionless version of the Butler- 
Volmer law for the electrode reactions, ie formulas 
(4) and (5),   read 

The dimensionless conservation conditions, cf. 
formula (6),  take the form 

.. . 

In order to compute the polarization curve, some 
algebraic simplifications result if the solutions of 
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equations (34)  and (35)  are written in the following 
form : 

C 2  = C2(o)e - I @ ( x )  -O(OII,  ( 4 3 )  
C 3  = NC3(0)e[@(x)-d(0)l, (44) 

where c,(O) and N are two constants of integration. 
As in Ref. [ 1 ] ,  it is found expedient to express these 
constants in terms of the potential drop in solution 
A 4  = 4(1) - W).  

Combining equations (33- 36) we have 

Substituting of this equation into normalization con- 
dition ( 4 2 )  gives the following relation between c2(0) ,  
N and y = e Z A @ :  

A second relation between c2(0) ,  N and y follows 
from the second conservation condition ( 4 1 )  

- C2(0)2  [ 3 N  In y + y -  ' - I]  = 1 - I t .  ( 4 7 )  
ZJ 

A combination of relations ( 4 6 )  and ( 4 7 )  gives N ( y ) :  

Taking use the identity 

and equations ( 4 3 )  and (44 ) ,   one can express c 2 ( 0 )  
and j  in terms of y 

Combinating these expressions with the elec- 
troneutrality condition ( 3 6 )  and formulas ( 4 3 )  and 
( 4 4 )  leads to  the following expressions for c,(O) and 
c l ( l )  in terms of y :  

~ ' ( 0 )  = f ( N  - l)c,(O), ( 5 2 )  

c l ( l )  = f (Ny'I2  - y -  " 2 ) ~ 2 ( 0 ) .  ( 5 3 )  

Formulas ( 4 8 )  and (50)- (53) and expressions 

It can be calculated in the following way. Express- 
ing c,(O) and c , ( l )  in terms of y one has three differ- 
ent expressions for current density, ie equation (51),  
which describes current density j  in terms of y only, 
equation (54) ,  which describes current density j  in 
terms of y and &0), and equation (55) ,  which 
describes j in terms of y, 4(O) and v. 

Equating the right-hand sides of expressions ( 5 4 )  
and ( 5 5 )  one finds that 4 ( 0 )  can easily be expressed in 
terms of y and v :  

Substitution of this expression for e2"O) into 
expression ( 5 4 )  leads to a relation between j ,  y  and o. 
For each value of y,  together with formula (51) ,  
which determines j (y) ,  this relation permits numerical 
computation of v as a function of y and j .  Thus this 
procedure gives the polarization curve j (v)  in para- 
metric form for arbitrary values of the exchange 
current density jo  and the transfer coefficient a. 

4 .  Numerical simulation and discussion 
Some results of numerical calculations of polariza- 

tion curves are presented in Figs 1-3. Figure 1 rep- 
resents a set of curves for a binary electrolyte, 

v / 

Fig. 1. Polarization curves j(v) determined by equations 
(51), (54) and (56) corresponding to different a values. 
k = 0.4; j ,  = 6; jy = 0.001; 1 - α = 0.5; 2 - α = 0.4; 

3 - z = 0.6; 4 - a = 0.3; 5 - α = 0.7. 

u 
which follow directly from expressions (38) - (39)  and Fig. 2. Dependence of the potential o,,, value correspond- 
the definition of y, determine the current-voltage ing to current density j = j , / 2  on the transfer coefficient rx 
characteristic j (v)  of the cell. for binary solution. j y  = 0.001 ; j ,  = 6. 
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Introducing notations 

Fig. 3. Polarization curves j(v) determined by equations 
(20) and (21) corresponding to different z  values. j ,  = 1; 
j~=O.Ol;  1 -a=O.5 ;  2-z=O.6;  3 -a=O.7 ;  

4 - z = 0.8; 5  - α  = 0.9; 6  - α  = 0.95. 

calculated according to equations (51), (54) and (56) 
and different values of a. One can see that the curves 
corresponding to values of z that are different from 
0.5 are shifted towards higher v values with respect 
to the curve corresponding to a equal to 0.5. 

The extremum property of the value z = 0.5 can 
be illustrated by the dependence of the value of the 
potential v,,, , which corresponds to the current 
density equal to one half of the limiting current 
density, on the values of parameter α. This relation is 
shown in Fig. 2. The curve vl12(z)  is practically sym- 
metrical with respect to 2 = 0.5 in good agreement 
with theoretical analysis. It should be stressed that 
such symmetry appears only for small values of 
exchange current densities. 

Figure 3 shows a set of polarization curves with 
the exchange current density equal to 0.1 and differ- 
ent values of transfer coefficient z. For z = 0.5 the 
polarization curve has only one inflection point cor- 
responding to the transition into the current region, 
where the diffusion limitation of electrode reaction 
becomes important. When the transfer coeflicient a 
increases, a second inflection point appears on the 
polarization curves at relatively small current den- 
sities. This inflection point is related to the transition 
from region of linear "ohmic-like" behaviour of 
polarization curves at small reaction overvoltages, 
which is independent of z, to the exponential "Tafel- 
like" region of the curve, which depends strongly on 
z. The inflection point of this type exists on the 
polarization curve only for relatively small exchange 
current densities j , .  At very small values of this 
parameter the position of this inflection point of the 
current-voltage curve corresponds to very low 
current density values. 

For a binary electrolyte it should be noted that in 
some special cases such as a = 213, a = 113 as well as 
in the case of a = 112, which was considered in [ 1 ] ,  
the polarization curve can be found from expressions 
(18)-(19) in analytic form. Equation (18) can be 
solved easily with respect to j: 

one finds after some algebra, that relation (19) for 
α  = 213, can be reduced to the form 

where t = e'u"13) > 0. The solution of equation (60) is 
(see eg [ 1 7 ] ) :  

Taking $(O) to be an independent parameter one 
can find the parametric analytic representation of the 
function j(v) from formulas (57) and (61), the relation 
v = (312,) In t ,  and the definitions of S, p and q. 

In a similar way the parametric form of current- 
voltage curve j(v) can be found for case of α = 113. 
Some examples of analytical treatment of electrode 
reaction kinetics for fractional values of a are con- 
sidered in [18].  

CONCLUSION 

An exact solution of the system of Nernst-Planck 
equations for a one-dimensional electrodiffusion 
problem, with boundary conditions of Butler- 
Volmer type, shows that the polarization curves for 
a cell having two identical electrodes have some 
interesting general properties. At small values of the 
exchange current density and current densities that 
are not close to the limiting current density j 1 ,  the 
polarization curve is of a form that is similar to the 
Tafel equation. One obtains that, 

with the effective transfer coefficient αeff related to 
the physical transfer coefficient a by the formula 

aeff = z(1 - α). 

Another general property of the polarization 
curves for the system under consideration is that, 
under certain conditions, two inflection points may 
appear. One of these is similar to that of the current- 
voltage curve for the reaction at one electrode, which 
is described by a Butler-Volmer law for the case of 
small exchange current density jo and current den- 
sities j, such that jo 4 j  < j ' .  The second inflection 
point can be observed on the j(v) curve in the region 
of relatively high values of v, where the current has 
values of the order of the limiting current density. 
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