
Biol. Mem., Vol. 6(4), 1992, pp.587-600 
Reprints available directly from the publisher 
Photocopying permitted by license only 
@ 1992 Harwood Academic Publishers GmbH 
Printed in the United States of America 

THE ELECTROROTATION OF AXISYMMETRICAL CELL 

A. V. Sokirko 

Frumkin Institute o f  Electrochemistry, 

Russian Academy o f  Sciences, Moscow 

The phenomenon of electrorotation of cells wi th  a more complicated 
shape than  the  spherical  one has  been theoretically investigated. The 
cell membrane w a s  assumed t o  consist of several  layers  d i f fer ing by 
the i r  e lec t r ica l  character is t ics  while al l  boundaries t o  be cofocal el- 
lipsoids of revolution (elongated o r  f la t tened) .  Even f o r  r a t h e r  s t rong-  
ly deformed cells t h e  speed of rotation w a s  shown t o  equal ( t o  t h e  
accuracy of about t ens  of percent)  t h a t  of t h e  spherical  cell of t h e  
same volume. 

(Received June 28, 1991) 

A number of works [1-8] studied theoretically t h e  movement of cells  in 

a n  external  a l ternat ing e lec t r ic  field. In study [1] an in tegra l  theory 

of dielectrophoresis and electrorotation has  been developed f o r  t h e  

spherically symmetrical  cells  with a n  a r b i t r a r y  membrane s t ruc tu re .  
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However, most cells and vesicles may be regarded a s  ball-shaped only 

with a cer ta in  approximation. In reali ty,  they a r e  e i ther  s t re tched in 

one direction o r  a r e  relatively thick discs. Calculation of the  movement 

of such cells using the  formula f o r  the  spherical cells may lead t o  

noticeable e r r o r s  due t o  an  incorrect choice of thei r  effective sizes. 

Furthermore,  i t  should be taken into account t h a t  f o r  the  movement of 

t h e  cells having no spherical  symmetry i t  i s  much more complicated t o  

determine the  distribution of the  r a t e s  of hydrodynamic f luxes  in a vis- 

cous liquid surrounding them. The present study was  concerned with the  

solution of such problems. 

FORMULATION OF THE PROBLEM OF FINDING 
THE MOMENTS OF ELECTRIC FORCES 

To calculate the  electric fo rce  acting on the  cell surface  and describe 

the  cell movement, in the  f i r s t  place i t  i s  necessary t o  solve the  

Laplace equation f o r  potential +: 

Since the  analytical solution of eq. (1) i s  possible only f o r  cer ta in  

types of boundary conditions, let  us impose definite res t r ic t ions  on the  

fo rm of the  cell su r face  by replacing the  real  cell fo rm by a simpler 

one so  t h a t  t h e  in terface  may coincide with t h e  su r face  coordinates in 

one of the  orthogonal system of coordinates. In our problem i t  i s  

convenient t o  approximate the  cell su r face  by an  ellipsoid of revolution 

and t o  use t h e  ellipsoidal coordinates. In the  s t re tched cells t h e  inner 

and outer  surfaces  of the  membrane a r e  formed by cofocal elongated el- 

lipsoids of revolution, whereas f o r  the  disc-shaped cells  these  a r e  

formed by f la t tened spheroids. As a particular case, spheroids also 

describe the  spherically symmetrical cells. 

We will consider below a detailed solution solely f o r  t h e  case  of 

elongated ellipsoids. Such a problem f o r  the  f la t tened ellipsoids i s  

solved in an analogous manner. 



CELL ELECTROROTATION 

FIGURE 1. Diagram of the structure of the cellular shell and de- 
signations of geometric and electrical characteristics: a and b 
a re  the semiaxes ( a  > b for  elongated ellipsoids); c , _ the  haK- 
distance between the foci; hj, the shell thickness; c and Qj, 

relative dielectric constant and conductivity, respectively. 

Let us characterize the cell form by a ratio of two linear sizes 

a/b - the largest and the smallest one and by i ts  volume V = 4/3nab2 = 
3 4/3nr . The value of r corresponds to  a ball of the same volume. For 

0 0 

an elongated ellipsoid of revolution a and b mean the large and small 

semiaxes of an ellipse 

whose rotation around axis OZ provided the given ellipsoid, 

r = ( x 2  + y2)1"2 (see Fig. 1). The extent of ellipsoid stretching may 

also be characterized by eccentricity 

which is uniquely related to the ratio of semi-axes, and a s  a linear 

size i t  is more convenient to  use c - the half-distance between the 

ellipsoid foci 

Transformation to  the ellipsoidal coordinates is done in accordance 
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with following formulas [9]: 

where cr r 1, 0 5 t 5 1. The coordinate surface  cr = const i s  a cofocal 

ellipsoid of revolution; t = const, cofocal hyperboloids; 0 5 Q 5 Zn, 

a n  angle in the  cylindric system of coordinates r, 9, z. Since the  

membranes of the  cells under study can have a r a t h e r  complicated 

s t ructure ,  let  us  use the  multilayer membrane model [2]. This model 

assumes t h a t  the  regions with invariable physical parameters  a r e  located 

between the  cofocal ellipsoids cr = a 
J' 

An ellipsoid with coordinate cr corresponds t o  the  innermost surface  and 
rn 

and ellipsoid with cr = cr t o  the outer surface,  cr = 1/e. 
1 ' 1 

While deducing the  expressions f o r  other cr one should bear in mind 
J' 

t h a t  the  distance between the  surface of two cofocal ellipsoids i s  not 

constant and, in contrast  t o  the spherical shell, changes f rom point t o  
0 

point. If a s  the  thickness of layers we assume their  values h 
J 

(1 5 j 5 rn )  at the  'equator' (at z = 0), then in the  remaining points i t  
0 2 2 1/2 

will be calculated f rom the relation h = hJ (1 - e t ) and 
J 

If we assume the  effective thickness of layers t o  be their  values 

h
i

a at the  'poles' (at z = f a ) ,  then we have f o r  i t  the  relation 
J 

2 2 1/2 2 1/2 h = h a ( l  - e t ) 1 - e ) , from where 
J J  

The approximation of a variable thickness of the  shell ought t o  lead 
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t o  changes in the  specific membrane capacity. Since a basically capaci- 

tive current  passes through the  cell regions close t o  the  poles, i t  i s  

more ra t ional  t o  call  the  layer thickness the  magnitude h
a  

and, 
J ,

respectively, use eq. (9).  

To calculate the  time-dependent magnitudes appearing in the  problem, 

i t  i s  convenient t o  use the  complex formalism, i.e., t o  record t h e  t ime 

dependence of any variable in the  fo rm 

where X i s  the  complex value expressed a s  

X = Xo exp ( i w t ) ,  

2 where w i s  the  angular frequency; t ,  time; i = -1; complex number X 
0' 

which in a general case  i s  the  function of coordinates, i s  t h e  amplitude 

of X [1]. Thus an electric f ield rota t ing around ax i s  y may be wri t ten  

in t h e  r ea l  p a r t  of the  complex field E . 
EXT' 

EEXT = ( k x  - i k Z ) E o  exp ( i o t ) ,  

where E i s  the  absolute value of the  amplitude of a rota t ing field,  k  
0 X 

and k a r e  unit  vectors of the  axes.  The field rota t ing around ax i s  z i s  

derived f rom (11)  by substi tuting z + y. 

As known, during polarization of an  ellipsoid by an  external  homo- 

geneous e lect r ic  f ield the  ellipsoid acquires only a dipolar moment and 

multipoles of higher orders  a r e  absent [10]. A s  i t  will be shown f o r  t h e  

case when t h e  in terface  i s  cofocal ellipsoids, th i s  property i s  pre- 

served. General reasoning gives t h a t  the  induced complex dipolar moment 

d i s  linearly re la ted t o  the  complex amplitude of external  f ield Eo 

where x i s  the  complex polarizability along the  relevant ax i s  (2  = 
rn 

x 1. The moment of fo rces  N created by the  electric f ield i s  calculated 
Y 

by the  formula N = [Re d, Re Eex t ] .  For field EEXT revolving around the  

symmetry ax i s  of an  ellipsoid, the  moment i s  time-independent and i s  
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expressed as  [1] 
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and the time-averaged value of the moment induced by the electric field 

rotating around axis y: 

Thus, to  find the induced electric field i t  is  sufficient to  

calculate two complex magnitudes and x . 
X Z 

CALCULATION OF THE COMPLEX POLARlZABlLlTY 

In the stretched ellipsoidal coordinates eq. (1) is written in the 

following form [9]: 

A t  the boundaries of the neighbouring regions the conditions of continu- 

ity of potential and complex current density, which express the law of 

charge conservation [5], a re  written a s  follows: 

Here, the complex dielectric constant is introduced 

where c and C are  the specific dielectric constant and conductivity of 
J J 

layers, respectively; e is the electric constant. While writing con- 
0 

ditions (17) we used the orthogonality of ellipsoidal coordinates which 
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enabled u s  t o  replace t h e  normal derivative t o  t h e  su r face  u = u by t h e  
J 

IT derivative. 

The boundary conditions f o r  th i s  system of equations look as a 

condition of potential  limitedness inside t h e  cell, and a n  asymptotical-  

ly homogeneous field a t  la rge  distances f rom t h e  cell: 

- t o  calculate complex magnitude x : 

- t o  calculate complex magnitude x ( the  e lec t r ic  f ield i s  implied t o  be 

couterdirectional  t o  t h e  respective axis) .  

In t h e  case  when t h e  f ield i s  directed along the  symmetry ax i s  of 

t h e  ellipsoid, t h e  potential  i s  evidently independent of variable (p: 

a$/& = 0, and t h e  general  solution of eq. (15) should be sought in t h e  

fo rm 

+J = E 0 c d A P ( o  + BQ(o) l .  
J J 

(21) 

where P and Q a r e  t h e  f i r s t  Legendre functions of t h e  f i r s t  and second 

type, respectively: 

A B a r e  t h e  a r b i t r a r y  constants.  From t h e  condition of limitedness 
J' J 

( 20 )  one can directly f ind  two  constants included in condition (21): 

whereas  f o r  t h e  o ther  constants  recurrent  re la t ions  a r e  obtained f rom 

conditions (16) and (17): 
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where the  prim designates the  derivative of the  corresponding function. 

From eqs. (23)-(25) one can easily find all  coefficients A B 
J' J 

using t h e  method following f rom the  proportionality of al l  A B 
1 

J' J 
(j < m )  t o  coefficient Am. Assuming conditionally t h a t  A = 1, i t  i s  

m 
possible t o  find all  coefficients A f rom (24) and (25). The su- 

perscr ip t  <<I% means t h a t  a l l  coefficients a r e  calculated at A = 1. 
m 

1 
Naturally, in th i s  case A. differs  f rom unity, therefore ,  the  r ea l  

1 
values of coefficients a r e  smaller than the  calculated ones A times: 

0 

Let us  consider now the  expression f o r  in more detail. The f i r s t  t e r m  
0 

proportional t o  P(cr) increases with increasing c and i s  exactly equal t o  

the  r ight  p a r t  of (20). The second t e rm corresponds t o  t h e  dipolar 
2 1/2 

member and at sufficiently large p = (x2 + y 2  + z % 1 may be 

presented as follows: 

where 8 i s  the  angle between the  radius-vector of a point and ax i s  z. 

Considering t h e  type of asymptotic decomposition f o r  function Q(c) [12] 

and eqs. (5)-(7) we obtain: 

The magnitude -B in eq. (28) may be regarded a s  a dimensionless value 
0 

of polarizability along ax i s  z. 

While calculating values of complex polarizability xx along ax i s  x, 

one should t ake  into account t h a t  potential $ i s  a function of all  

spat ia l  variables: cr, r, 9. Therefore, when one uses condition (19) 

instead of boundary condition ( 2 0 ) ,  t he  solution of equation (15) may be 

sought in the  form: 
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2 1/2 
+ J = E o c ( l - t )  [ a  p(o) + b q (o ) l  cos 9, j = 0 ,..., rn, (29) 

J 

where a b a r e  the  a r b i t r a r y  constants, p b )  and q ( o )  a r e  the  joint 
J' J 

Legendre functions of the  f i r s t  and second type (wi th  the  subscripts and 

superscr ip ts  equal t o  unity [ll]): 

Fur ther  solution s t eps  a r e  performed similarly. The expressions f o r  co- 

efficients a b a r e  obtained f rom eqs, (24), (25) by substi tuting the  
J' J 

joint functions f o r  the  Legendre functions. Considering the  asymptotics 

q ( r )  at high s values [11], one can wri te  the  expression f o r  polariza- 

tion along ax i s  x f o r  the  case of a cell s t re tched along ax i s  z. 

Thus, we have calculated the  values of complex polarizability x and xZ 
X 

included in expressions (13), (14) f o r  the  moments of forces  act ing upon 

the  cell. 

In t h e  case of disc-shaped cells (f lat tened ellipsoids of revolu- 

tion, a < b)  a number of changes may be brought into the  above formulas:  

The Laplace equation (1) in the  flat tened ellipsoidal system of coordi- 

na tes  i s  wri t ten  a s  follows: 

I t s  solution may always be sought in the  fo rm of (21) and (29) f o r  t h e  
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fields of respective orientations; however, instead of Legendre func- 

tions P(cr) and p ( u )  one should use t h e  corresponding functions of a 

purely imaginary argument icr divided by i ,  whereas functions Q(cr) and 

q(cr) should be replaced by Q(icr) and q(icr): 

P(cr) = cr, Q(cr) = cr a r c t g  cr - 1 ,  (22' )

All o ther  formulas  remain unchanged. 

Thus, a t  t h e  orientation of the  cell symmetry axis  along the  ax i s  of 

electric f ield rota t ion o r  normally t o  th i s  ax i s  we have found the  

ro ta to ry  moment of electrical  forces  acting on the  cell. 

Note t h a t  when the  ax i s  of cell symmetry forms wi th  t h e  rota t ion 

ax i s  a n  angle #: 0 < # < n / 2 ,  the  dipolar moment of the  cell will not 

lie in the  plane of electric field rotation which, a f t e r  some time, will 

inevitably lead a f t e r  some time t o  a tu rn  of dipolar moment and, con- 

sequently, of t h e  cell itself [12] .  

THE FORCE OF VISCOUS FRICTION ACTING ON A 
ROTATING AXISYMMETRIC CELL 

In works [13,14] an  expression was  deduced f o r  the  moment N of f r i c-  

tion forces  acting on the  surface  of an  elongated ellipsoid rota t ing 

around i t s  axis: 

where q i s  the  viscosity of a liquid, R i s  the  angular velocity of ro ta-  

tion. Using ( 4 )  one can express  the  angular velocity f rom ( 3 2 ) :  

The expression in the  braces i s  independent of character is t ic  s ize  r 
0 

but i s  determined solely by the  cell eccentricity e. If t h e  cell f o r m  i s  
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close t o  t h e  spherical one (e  + 0), t he  expression enclosed in the  

braces  tends  t o  1 and formula (33)  is  transformed into a simple relation 

f o r  the  sphere [15]. 

For t h e  f la t tened ellipsoids of revolution i t  i s  also possible t o  

use (32)  in which e,  c and functions Q(@) should be determined by 

formulas (3' ), (4'  and (22' ), respectively. 

Hence, having found the  to ta l  moment of electric f ield fo rces  act ing 

on the  cell f rom t h e  formulas of the  section Calculation of the Complex 

Polarizability, using eq. (33) one can calculate the  angular velocity of 

i t s  rotation.  Let us  emphasize t h a t  within t h e  framework of the  above 

suggestions about t h e  cell fo rm these formulas give evident analytical 

relations.  

DISCUSSION 

Figure 2 shows t h e  dependence of dimensionless r a t e  of cell rotation R  

on the  logarithm of frequency of external electric f ield rota t ion w  f o r  

various r a t ios  a/b. In the  f i r s t  place i t  should be noted t h a t  in f a c t  

the  rota t ion r a t e  i s  r a t h e r  weakly dependent on the  cell form. Variation 

of a / b  r a t io  f rom 1 t o  8 leads t o  the  change in the  rotation r a t e  by no 

more than  t ens  of percent. Note tha t  th is  resul t  is  not tr ivial  because 

a t  such an  elongation of the  ellipsoid i t s  polarization in the  direction 

normal t o  the  symmetry ax i s  decreases several  t imes and, consequently, 

the  moment of electrical  forces  also decreases. However, the  viscous 

f r ic t ion diminishes too which results  in an  unchanged r a t e  of cell 

rotation.  

Let us  discuss now the  dependences R ( w )  f o r  the  monolayer membrane. 

(Multilayer membranes have a more complicated form of R ( w )  which will be 

discussed against  the  background of experimental resul ts  in subsequent 

papers).  At sufficiently low frequencies w  electric current  does not 

c ross  the  dielectric shell of the  cell but symmetrically passes round 

i t .  Therefore,  no electrical  moments a r i se  in the  system. Coming 

nearer  t o  the  frequency of the  f i r s t  peak w ,  t he  capacitive cu r ren t  
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FIGURE 2. Dependence of dimensionless ra te  of cell rotation on 
frequency of external eiectric field. The ratio of cell shell 
thickness t o  cell size h / r  = specific conductivities of 
the shell, the medium inside and outside the cell a r e  10-12, 1 
and S/m, respectively; relative dielectric constant of the 
the shell = 2. a / b  = 1 ( 1 ) ,  4 (2) and 8 (3). 

across membrane increases which leads to  the appearance of a substantial 

imaginary part in complex polarizability x . Thus, the position of the 

f i r s t  peak is basically determined by the capacity of the cell membrane. 

Therefore, the shift  of the peak, corresponding to  w towards higher 
1' 

frequencies is  not strictly substantiated, since in the solution of our 

problem the specific membrane capacitance was not assumed to  be a 

strictly constant magnitude. 

More interesting is the shift  of o corresponding to  the second (ne- 
2 

gative) peak. In the course of the development of the theory of electro- 

rotation for  the ball-shaped cells 11 o was estimated a s  follows: 
2 

i.e., i t  was suggested that  the real and imaginary parts  of the complex 

dielectric constant of the medium inside the cell a r e  approximately 

equal to  each other. Since is  little different from the dielectric 
2 

constant of water, formula (34) makes i t  possible to estimate the con- 

ductivity inside the cell. However, a s  seen in Fig. 2, the position of 
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w i s  dependent on the  cell form. This does not disprove es t imate  (34) 
2 

because the  dimensionless fo rm fac to r  can be contained in t h e  r ight  p a r t  

of (34). Interestingly, the  peak of curve 2 goes down lower than  the  

peaks of curve 1 and 3 which i s  indicative of a nonmonotonous cha rac te r  

of the  curve expressing the  dependence of ( R ( U ) ~ )  on a / b  ra t io .  

In conclusion i t  i s  noteworthy t h a t  the  relations f o r  polarizabi- 

lity x of elongated and f la t tened cells may also be used t o  describe 

electrophoretic phenomena in an  alternating electric f ield [ l1 ,  12]. 

The author  thanks V. Ph. Pastushenko, E. Donat and G. Fuhr f o r  the  

topic proposed f o r  investigation and useful discussion and P. I. Kuzmin 

f o r  assistance in carrying out  computer-assisted calculations. 
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