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Abstract 

The theoretical analysis of parallel electrode processes under conditions when the product of one of 
the reactions is involved in a homogeneous reaction with a reactant of the other is presented. As a result 
the limiting current of the second reaction depends on the current of the first: an effect which was called 
"hidden limiting current" by Kemula and Grabowski. The analytical and numerical calculations 
performed cover a wide range of parameters of the problem. The results of Kemula and Grabowski are 
used in the particular case of the limit of an infinitely high rate constant for the homogeneous reaction. 

1. INTRODUCTION 

The phenomenon of hidden limiting currents was first discovered by Kemula and 
Michalski [1] nearly fifty years ago. Its first theoretical analysis was made in ref. 2. 
This phenomenon is observed in systems with parallel electrode processes, in which 
the product of one of the electrode process enters a homogeneous reaction with the 
reactant in the other parallel electrode process. 

Let, for example, the solution contain substances A and B which are reduced at 
the electrode. For clarity we shall suppose that B is reduced at more negative 
potentials: 

Here n', i = 1, 2 is the number of electrons transferred in the ith reaction, n, are 
stoichiometric coefficients for electrode reactions. 

If the reaction 

proceeds in the diffusion layer, then, with the terminology of ref. 2, a hidden 
limiting current of the first kind is observed in the system. This current is defined as 
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a difference of limiting currents i, in the absence of a secondary reaction (3) and i; 
in the presence of a secondary reaction: 

If, however, the reaction 

v, B* + V, A -+ B,TA, 

proceeds in the solution, then a hidden limiting current of the second kind 
Di ∆i1 = i1 - i'1 is observed. 
Hidden diffusion limiting currents were analysed in ref. 2 with the assumption, 

that the homogeneous reaction rate is infinitely high. 
A special case of a reaction inhibiting an electrode process has been analyzed in 

ref. 3. In this process the electrode reaction product interacts with the initial 
substrate, and hidden currents of the third kind can be observed. The experimental 
studies of hidden diffusion limiting currents have been described [3,4]. 

This paper develops a theory of hidden diffusion limiting currents for arbitrary 
values of the homogeneous reaction rate constant. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

We shall consider here hidden limiting currents of the first kind only (the 
problem of hidden limiting currents of the second kind can be solved in a similar 
manner) and for simplicity we shall assume all stoichiometric coefficients to be 
equal to unity: v, = 1, ni = 1, ni  = 1. On the assumption that all the processes under 
consideration proceed in an excess of the background electrolyte, so that the 
electromigration effects are negligible, the equations governing the distribution of 
substance B and reaction (1) product A* concentrations in a diffusion layer, can be 
written as 

Here Dl. and D, are diffusion coefficients of the corresponding substances, k ,  is 
the rate constant of reaction (3), t is the coordinate perpendicular to the electrode 
surface. 

The boundary conditions are assumed to be specified by concentration c, in the 
bulk of solution 

and by zero concentration of substance A*: 



Here L is the diffusion layer thickness, which is supposed to be approximately the 
same for substances A* and B. We shall seek the solution under the condition 
c2(0) = 0, which corresponds to achieving a limiting current in substance B. 

To obtain the last boundary condition, one must find the solution of the 
diffusion equation for substance A, which does not participate in homogeneous 
reaction (3): 

with the boundary condition at t =  L: c,(L) = cp and the condition of limiting 
current in substance A: c,(O) = 0. Integrating (8) twice, one obtains a linear profile 
for c,: cl = C;[/L. Since the stoichiometry of reaction (1) shows that the fluxes of 
substances A and A* near the electrode are equal and opposite in direction, the last 
boundary condition for c,, can be written in the form 

Let c, and c2 be the dimensionless concentrations of substances A* and B, 
respectively, 

x = E/L is the dimensionless coordinate (0 < x < 1), K is the dimensionless reaction 
rate, J is the dimensionless flux of substance A: 

Then the system of equations (6 )  and (7) and the boundary conditions can be 
written as: 

We set out to find the relation between 

the dimensionless limiting flux of substance B and J,  - the dimensionless limiting 
flux of substance A for different values of K .  

The above set of equations can be reduced to a single differential equation. 
Subtraction of equation (13) from (12), twice integrating the result by use of the 



boundary conditions (14) and (15) and substitution into (16) gives the linear relation 
between c 1 ,  and c2 

c, - c, = (;, + ;,)(x - 1) - 1 (17) 

By substitution of (17) into (12), the system (12) and (13) reduces to a single 
equation. 

The set of equations (12) to (15) has no analytical solution in the general form. 
To study some limiting cases, when either K or J, is small or large, we can use the 
method of asymptotic expansion in a small parameter while retaining, as a rule, the 
zero and first terms of the expansion only. In this case the variables X, Y, Z  used 
below, designate functions having a scale of the order of unity. 

3. THE CASE OF LOW REACTION RATES, K -=z I 

In this case the solution for c 1 ,  c2 can be sought in the form of an expansion over 
small parameter K :  

cl = X + K Y  (18) 

C 2 = Z + K U  (19) 

Substitution of (18) and (19) into (12) and (13), respectively, to an accuracy of terms 
of the first order of smallness, gives 

Thus retaining in these equations the terms of zero order of smallness only, 

Twice integrating these equations with the boundary conditions (14) and (15) gives 

x=;,(l - x )  z = x  (23) 

Substituting (23) into (20) and (21) gives 

Since X and Z have already satisfied the inhomogeneous boundary conditions (14) 
and (15), Y  and U should satisfy the homogeneous boundary conditions 

Twice integrating (24) in terms of (25), gives the first terms of the expansion of (18) 
and (19): 
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Fig. I. The distribution of concentrations c, and c2 and of homogeneous chemical reaction rate  KC,^, in 
the diffusion layer for the following values of dimensionless parameters: (a) c,(O) =1, K = l o ,  (b) 
c,(O)=8, ~ = 1 0 ,  (c) c1(0)=0.3,  ~ = 1 0 0 0 , ( ~ ~ < 1 ) ,  (d) c1(0)=1.5, ~ = 1 0 0 0 ,  (; ,>I).  

The distribution of the concentrations c,  and c,, which illustrate this solution, 
are shown in Fig. la. 

Solving and differentiating (19), gives the unknown relation between fluxes j, 
and j,: 

Expression (26) is applicable for K j, << 1 only, i.e. for sufficiently small fluxes j,. 
For K j, - 1 a different method of solution is required. 

4. THE CASE OF LOW REACTION RATE K << 1 A N D  HIGH FLUX VALUE J, >> 1 

The parameters K and j, should satisfy the condition K j, - 1. In this case 
function c,  has a characteristic scale c,  - j,, and function c, - 1. This permits the 
problem to be solved as an expansion in terms of l / j  whose initial terms are 
c,  = j, X + Y,  c, = Z where X ,  Y ,  Z are functions with the scale of the order of 
unity. 

Substituting c, and c, as functions of X, Y,  and Z into (12)  and (13)  and 
regarding the terms of the order of j,, one obtains X = 1 - x. Substituting the 



solution found for X into equation (13), the latter reduces to 

The solution of this equation is a linear combination of Airy's functions: 

Z, = s , ~ i  [ q ( l  - x)]  + s , ~ i  [ q ( l  - x ) ]  

3- 
where q = JK j, and s,, s2 are constants. Determining s, and s2  from the boundary 
conditions (15) and (16) and differentiating (28), one obtains the expression for the 
limiting flux of substance B: 

In the case of sufficiently small K values, when q << 1 expression (29) can be 
simplified by retaining the leading terms of the asymptotic expansions of the Airy 
functions only [5]. Thus equation (29) is reduced to formula (26). Thus, expression 
(29) is applicable for J << 1 and for any K value. 

5 .  THE CASE OF LARGE REACTANT FLUXES J, >> 1 

The case of larger fluxes J, has been studied already in Section 4 under the extra 
condition K -z 1. In this section K is assumed to be of the order of unity. 

Unlike the case considered in Section 4, where functions c,(x), c2(x)  varied 
smoothly throughout the 0 ,c x < 1 interval, in the case of K 2 1 and K J, >> 1 
function c,(x) changes sharply for values x near 1, but throughout the remaining 
interval it varies smoothly, taking the values close to zero. In other words, the 
boundary layer is formed near the diffusion layer boundary at x = 1. 

Since in the case under consideration dc2(0)/dx = 6 << 1 the relation between c, 
and c2 (17) can be written as: 

where x *  = 1 - l/j,. 
Outside the narrow region near x = 1, where 1 - x >> I/;,, the first term in (30) 

can be neglected. In this case (13) transforms into the equation 

The solution of this equation is a linear combination of Airy functions 

c2 = s , ~ i [ q ( x *  - x ) ]  + s , ~ i [ q ( x *  - x ) ]  

Determining s, and s, coefficients from the boundary conditions (15), taking into 
3 

account that ( x *  - l ) q  = >> 1 and qx* = '6 >> 1 and using the leading 



terms of the asymptotic expansions for Airy functions a t  large and small values of  
the arguments [5] ,  one obtains the expression for a limiting flux of substance B: 

Note that formula (31) is a particular case of (29) where q >> 1. In deriving (31)  
only the condition j: >> K > 1 was used, therefore, relation (31) is valid for J,  >> 1, 
K >> 1 and j: >> K as well. Thus, one can conclude that formula (29) is applicable 
not only for K << 1 and any j 1 ,  but also for j1 >> 1 and (not only small) K  values 
satisfying the K << j: condition. 

The behaviour of c , ( x ) ,  c , ( x )  functions for J, >> 1 and K ~ 1 is shown in Fig. lb .  

6. T H E  CASE OF SMALL FLUXES OF SUBSTANCE A( J ,  << 1 )  

For j1 << 1 and sufficiently small K values, so that j , ~  << 1, the flux of substance 
B is given by formula (26). Below we consider the cases with K   ~1 and J,K >> 1. 

Since the characteristic scale of variation of function c , ( x )  is - j1  << 1,  we shall 
find c,, c, as  expansions in j 1 ,  whose initial terms are: 

el = j l X  c,= Y + j , Z  (32 )  

where X,  Y,  Z are functions with the scale of variation of the order of unity. 
Substitution of (32) into (13). in the zero approximation and taking into account the 
boundary conditions, gives Y = x .  In this case equation (12) becomes d 2 x / d x 2  = 

j , xX .  Its solution, which satisfies (15), is a linear combination of Airy functions 

Now, taking into account the linear relation between c1 and c, (17), the flux j2 can 
be found: 

Using the leading terms of asymptotic expansions of the Airy functions one can 
see that (34) transforms into (26) for K << 1. For high reaction rates, K >> 1,  the 
solution of the problem corresponds to the existence of a boundary layer near x = 0. 
In this case d c , ( l ) / d x  << 1,  and the solution is found by use of the method that is 



described above for the case o f  the boundary layer at x = 1. The result here 
coincides with the expression for flux J, derived from (34) at J, >> 1. 

J, = 1 -J, [ I  + K - ~ ' ~ A ~ ( O ) / A ~ ' ( O ) ]  (35 )  

Thus, formula (34) is valid for J, << 1 and for any value o f  K .  

7. HIGH REACTION RATES ( K  >> 1 )  

In considering this case we shall distinguish two situations: J, < 1 and J, > 1. 
Let J, < 1. At high reaction rates substance A* has time enough to react almost 

completely with substance B near the electrode. The boundary layer is formed near 
the electrode surface, where c, . c, has a sharp maximum, since c,(O) = 0, and then, 
after the maximum, c , ( x )  decreases exponentially, since all substance A* reacts 
near the electrode. It is this limiting case, which corresponds to hidden limiting 
currents considered in ref. 2, where the flux o f  substance B to the electrode in the 
limit o f  k = cc was supposed to be equal to (1 - J,). 

W e  shall assume that for K >> 1 the flux o f  substance B to an electrode differs 
from (1 - J, )  by a small value 6 :  

; , = I - K + S  (36)  

Then, taking into account (15), the relation between c, and c, becomes 

c, = c, + (1  + 6 ) ( x  - x,) (37)  

where x, = 6 / ( 1  + 6 )  = 6. In the limit o f  K + cc, 6 = 0 ,  c , ( x )  = x ,  c , ( x )  = 0. 
The solutions will be sought in the form o f  

c,  = X-,  c, = Y -  for 0 < x < x, 

c, = X+, C, = Y +  for x ,  < x < 1 

For x >> x, one can neglect c, in (30) and obtain the equation for X': 

whose solution, satisfying (15), is given by the expression: 

Note that at x = x,, the second term in the expression for X' i s  exponentially small 
compared to the first one and can thus be neglected. Function Y' corresponding to 
X+, is found from (37): 

Y'= ( 1  + S ) ( x  - I , )  + s , ~ i ( & ( x  - x,))  

In the x < x, region c, - x ,  and s, - 6 = x,. Therefore, neglecting c, compared to 
the second term in (37), one arrives at the following equation for Y - :  



The solution of this equation is a linear combination of Airy functions: 

The relation between s, and s6 is found by using the boundary conditions (15) and 
conditions of matching the solutions. The matching conditions for Y  and Y +  are 
as follows: 

Upon determining coefficients s, s5, s6 from (36) and (38), one obtains the equation 
for δ :  

The value of δ ,  determined by equation (39), has the order of K - ' "  for values of 
j ,  not close to unity. When j ,  1 formula (35) can be obtained from (39) and (36). 

3 
It can be readily seen that for 1 - j  << 1 and f i 6  >> 1 ,  j2 = 1 - j,  << 1 .  Thus, 
equation (36) given an accurate solution for small fluxes of reactant A j ,  << 1 and 
for all values J ,  < 1 and K >> 1 .  

Now we shall turn to the situation where K >> 1, j ,  > 1 .  In contrast to the case of 
J ,  1  considered above, the boundary layer arises here at some intermediate point 
8  inside the 0 < x < 1 region, rather than at the right-hand boundary x  = 1. 

We shall seek the solution of the problem in the form of first terms of the 
expansion in a small parameter K - I :  

where X, Y ,  Z, U - 1 .  In the zero approximation, X .  Z = 0 except in the vicinity of 
the point 8  = 1 - l / j , ;  then the equation and boundary conditions are satisfied by 
the functions 

In the vicinity of x = θ  the reaction zone is concentrated, localized to where 
substance B enters the reaction with substance A*. Only a small portion of 
substance B reaches the electrode: j, = 6 << 1. To find θ  we shall seek the solution 
in the form that follows from (40) and (41):  

c, = Y -  c  I = X - =  Y P +  j , (B  - x )  for x < 8  

c , = X +  c , =  Y
f

+ j , ( x - 8 )  for x  >, 8  

where Y - ,  X i -  j,' << 1. The algorithm for finding the solution is analogous to that 
described above. If sufficiently far removed from point x  = θ ,  Y -  or X' in (37) can 
be neglected, to give Airy equations in each of two regions and so the coefficients in 
the linear combination of Airy functions from the boundary conditions and from 



conditions of matching of Y- and Y' functions and of their derivatives at x = 0 
can be found. As a result, one obtains: 

In obtaining (43) it was assumed that (j1 - 1 ) ~  >> 1, j1 << K, i.e. that the point θ is 
not too close to the ends of the interval 8 >> δ, 1 - θ >> δ. If one assumes, however, 
that 1 - 8 << δ, then j2 is given by formula (31). When 8 << 1 the flux j, = 0. 

The profiles of the concentrations c,(x), c,(x) when K >> 1, j1 - 1 are shown in 
Fig. lc,d. 

8. NUMERICAL SOLUTION OF THE PROBLEM 

To describe completely the behaviour of a limiting flux of substance B for 
arbitrary values of K and J,  the set of equations (12)-(15) was solved numerically. 

The solution was found as follows: It follows from relation (17) at x = 0, that 

c, (0) = c, (0) + j1 - 1 (44) 

Substituting (44) into (17): 

c2 = c, +c,(O)(x - 1) + x  (45) 

Using (45), equation (12) is transformed to: 

Equation (46) with boundary conditions c,(l) = 0, c,(O) = T was solved numerically 
by the method of linearization and sweep. 

2 - 

1 - 

0 1 2 
J 4 

Fig. 2. Dependence of the dimensionless total flux on the dimensionless flux J,  for values of K :  (1)  K = 0, 
(2) K = 1, (3) K = 10, (4) K = 100, ( 5 )  K = 1000, ( 6 )  K = m. 



TABLE 1 

Approximate analytical formulae for the dependence of flux J, on J,  for different ranges of j1  and 
values of K 

(26) Computer 
t numerical 

" An arrow indicates that the corresponding formula can be obtained as a particular limiting case from 
the more general formula. 

From the solution the values of J, = dc , /dx  I,=, and j2 (the limiting flux of 
substance) B as functions of T were found; therefore, the unknown dependence 
j2( J, ,K) was found in the parametric form. The calculated values of the total flux 
J = J, + J, of substances A and B to the electrode are presented in Fig. 2 for some 
values of K. The family of curves J, shows the degree to which the reaction rate K 

influences the resulting kinetics of the process. The K = cc limit, considered previ- 
ously [2], corresponds to j = 1 for J, < 1 and to J = J, for J, > 1. This means that the 
asymptotes found for the solution represent the straight lines corresponding to the 
approximate Kemula and Grabowski theory. The hidden limiting current of sub- 
stance B, which is difference in the current at K = 0 and that at K > 0, is given by 
A;= 1 -J2. 

The analytical calculations obtained for different values of K and J, are listed in 
Table 1. 

9. CONCLUSIONS 

The dependence of hidden limiting currents on J,, which was determined for a 
wide range of K values (see Fig. 2), makes it possible to estimate the value of 
homogeneous reaction rate constant k,  from the relevant experimental relation- 
ships. T o  find this value one should compare the experimental curve of the 
dependence of limiting current on current J,, i.e. on the composition of a solution 
with calculated curves and choose a value of K that corresponds to the theoretical 
curve, which describes experimental data with the greatest accuracy. 

Note that the asymptotes, which the calculated J( j1 )  relationships approach, are 
determined by the stoichiometry of processes (1) and (2). Thus, in analogy with the 
formulae described in ref. 2, the theory developed permits the stoichiometry of 
processes under consideration to be derived and allows the rate of a homogeneous 
reaction conjugating two parallel electrode processes to  be found simultaneously. 
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