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The paper provides a theoretical analysis of the electrodiffusion problem arising when cations and anions 
are reduced in parallel at an electrode in acidic solutions and OH- and H+ ions subsequently recombine 
in the Nernst diffusion layer in a homogeneous reaction. The conditions are estimated under which a 
limiting current of anion reduction will be realized in the system and under which hydrogen ions start 
to be directly involved in the electrode process. 

1 .  INTRODUCTION 

When two or more electrochemical reactions occur in parallel at an electrode and the solution contains no base 
electrolyte, they generally will influence each other owing to interaction of the reactant and product transport by 
diffusion and migration. This interaction of the electrode reactions can be unilateral [1, 2] or mutual [3], and the current 
of one of the processes can increase or decrease when that of the other increases. Some examples illustrating the 
complexities in the interaction of two kinetically independent processes have been reported in [4, 5]. 

In [4-7] different schemes of the parallel reduction of metal and nitrate ions in acidic solutions had been 
investigated. This was done under the assumption that hydrogen ions are involved in anion reduction at the electrode. 
It was seen from a mechanistic analysis of the parallel reduction of cations and oxygen in acidic solutions performed in 
[8] that under certain conditions the interaction of the ionic transport processes produces a changeover from a mechanism 
where the hydrogen ions are directly involved in the reduction of oxygen at the electrode, to another mechanism where 
hydroxyl ions are formed at the electrode which then are neutralized by hydrogen ions in the diffusion layer. 

In the present work we examine the parallel reduction of anions and metal cations in acidic solutions under 
conditions where the hydroxyl ions produced in anion reduction undergo homogeneous recombination with hydrogen 
ions in the diffusion layer. 

2. FORMULATION OF THE PROBLEM 

Consider two electrode reactions occurring in parallel; copper is electrodeposited at the electrode: 

while NO3- ions are reduced according to the scheme of 

The NO2-and OH-ions-produced in reaction (2) are transported by diffusion and migration from the electrode into the 
solution, and the OH

-
 ions undergo recombination with the opposing flow of H+ ions in the diffusion layer: 

The scheme considered here, which involves the homogeneous reaction (3)  following the electrode reaction (2), 
differs from the scheme (4) analyzed in detail in [5], where it was assumed that the H+ ions are directly involved in NO3- 
reduction: 
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A generalization of scheme (1) to ( 3 )  for ions of arbitrary charge is the system of two electrode reactions 

which is supplemented by the consecutive homogeneous reaction of recombination of the Asis- ions in the diffusion 
layer: 

Here suffixes 1 to 5 refer to the cations of the metal being deposited, to the cations involved in the homogeneous 
recombination reaction, to the anions being reduced, and to the products of electrode reaction (6); AiZi is the symbol of 
the corresponding component, BI0 and B,O are the neutral substances, n is the stoichiometric coefficient, and Zi is the 
charge number of the corresponding ion ( i ,  and is are assumed to be relatively prime numbers). In Eq. (6) the 
simplifying assumption was made that one original anion ~ ~ ~ 3 - y i e l d s  one anion AqE3- having the same charge as A3'3-, 
i.e., that 2, = I,, as in reaction (4). It will be assumed in the following, moreover, that the diffusion coefficients of these 
ions are also approximately the same. 

The system of electrodiffusion equations describing the scheme (5) to (7) is as follows: 

Here ci are the corresponding concentrations made dimensionless through cO, which is the metal ion concentration in the 
bulk solution, Di are the corresponding diffusion coefficients, Q = FE/RT is the dimensionless potential, x is the 
dimensionless coordinate (0 i x i 1), L is the thickness of the Nernst diffusion layer, il and i2 are the current densities 
of reactions (5) and (6) ,  jl > 0 and j2 > 0 are dimensionless fluxes, and K is the rate constant of the recombination 
reaction (7). Equation (13) is a statement of the condition of local electroneutrality. The values of potential and 
component concentrations will be regarded as given at the diffusion-layer boundary of x = 1: 

The system of differential equations (8) to (12) contains two second-order equations, hence two additional 
boundary conditions must be specified to solve it; in this capacity one can use the condition that ions AZi2+ are not 
present at the electrode: ~ ~ ( 0 )  = 0, and that the fluxes of ions ~ ~ ~ s - a n d  Aqt3-away from the electrode are determined 
by the stoichiometry of reaction (6). 

System (8) to (14) is quite complicated, and has no analytical solution in its general form. We shall consider that 
the recombination process (7), just as reaction (3), is relatively fast and hence is restricted to a narrow region rather 



Fig. 1. Schematic of the component concentration distributions in the 
diffusion layer; 8 is the region where the recombination reaction (7) is 
localized. 

smaller in thickness than the diffusion layer [9]. It can assumed in this case that the recombination reaction (7) occurs 
at some point θ within the diffusion layer: 0 < θ < I,  and hence one of the Eqs. (9) and (12) can be replaced by the 
condition* 

This condition implies that the diffusion layer can be split up into two regions: a region B to the right of point 8, where 
ions ~ ~ ' 5 -  are absent, i.e., c5(x) = 0 for 8 < x < 1; and a region A adjacent to the electrode (to the left of point 81, 
where ions are absent, i.e., c2(x) = 0 for 0 < x < 8 (Fig. I). It is obvious that then the fluxes of ions ~ ~ ~ 2 +  and 
A,"- are constant within the corresponding intervals, and can be stated in terms of flux j2 and the stoichiometric 
relations with the aid of the reaction Eqs. (6) and (7). Then it will be sufficient to use boundary conditions (14) as well 
as the boundary conditions ~ ~ ( 0 )  = 0 and ~ ~ ' ( 0 )  = 0. 

We shall introduce the relative charge numbers zi and the potential \Ir as defined by the relations 

Y =:,+ 
in order to simplify subsequent formulation of the equations. Using (15) and (16) we can rewrite the system of Eqs. (8) 
to (13) in region A (0 < x < θ) as: 

*Strictly speaking, instead of condition (15) we should have written 

$2* = Kt, 
2 6 

where K' is the equilibrium constant of the dissociation-recombination reaction. Considering that usually the 
recombination constant is much larger than the dissociation constant, and hence equilibrium constant K' extremely small, 
condition (15) will be sufficiently exact. 



Fig. 2. Relative positions of the regions of a steady state with respect to the parallel 
processes following the scheme of (1) to (3) (region III) or the scheme of (1) and (4) 
(regions I and II) in the plane of j ,  and j z ,  at k-values of: a) 0.6 (regions I and III do not 
touch), b) 0.3 (regions I and III have a common boundary). Explanations in the text. 

where the parameter r,~ = )1D3/D5. In region B (6 < x < l ) ,  Eqs. (17) to (19) enter the system of electrodiffusion equations 
without any changes, but the Eqs. (20) and (21) must be replaced by the equations 

where v = nD3z5/D2z2.  At point 8, the conditions of continuity must be fulfilled for the potential and all concentrations. 
The value of 8 itself will be found while solving the problem. 

3. MATHEMATICAL ANALYSIS OF THE PROBLEM 

We start our discussion with region A in Fig. 1, which corresponds to 0 < x < 8. To find the distributions of * 
and ci in this region one must solve the system of Eqs. (17) to (21) with the boundary conditions , 

where G, r, and Qo are constants specifying the values of the concentrations and of potential at the right-hand boundary 
of interval (0, 8); they will be found later from the continuity conditions for ci and Q at x = 0. 

The distributions-of concentrations ci and of potential were obtained by changing the independent variable in 
system (17) to (21) from x to Q, in a way analogous to that used in [3]. Functions c,(Q), c2(Q), and x(Q) are given by the 
relations 

where 



and J = j2/jl is the flux ratio. 
Relations (25) to (30) describe in a parametric form the functions ci(x) which are schematically shown in Fig. I .  
Under conditions of a limiting current with respect to the anions being reduced, we have c3(0) = 0 and from (27) 

and (25) we can obtain the relation between fluxes jl and j2 in a parametric form: 

Here 0 < J < oo and qo = 9 I x=o - Q8 is the potential difference between the ends of segment (0, 8 )  which can be 
determined from the transcendental equation 

An immediate use of the analytical relations (28) to (33) is difficult since the transcendental Eq. (33) must be - - -  
solved numerically. However, in the frequent case of z, = 1 (z3= z ,  = z,) which in particular corresponds to the scheme 
(1 ) to (3), Eq. (33) is readily solved for Ψ0. This is the case which we shall analyze in the following. Then instead of (3 1) 
we can obtain for jl the simple expression 

where 

For a solution of the system of differential Eqs. (17) to (19), (22), (23) with boundary conditions (14) in the 
interval of 9 < x < 1, i.e., in  region B of Fig. 1, we can use the solutions obtained for  the same system of equations in 
[5] in the interval of 0 < x < 1 .  The requirement that concentration c2 be continuous at  the matching point B implies that 
the value of c2 which is determined by solving the system of (17) to (19). (22), (23) should be zero at  this point. The 
connection between currents jl and j2 which follows from the condition of cJO) = 0 can be written parametrically, with 
the results of [5], in terms of the parameter J defined by relation (32):* 

where 

Using the expressions found in [5] for concentrations cl(x) and c2(x) in region B we can write the parameters G and r 
introduced into (24) in terms of cl(B) and c,(B): 

*In [5], typographical errors are present in relations (29) and (30) which consist in an incorrect positioning of the 
exponents. The second square brackets in (29) and (30) are the exponents of the expressions in the first square brackets. 



From relations (34) and (36) we can now determine the value of θ, which is the location of the recombination 
reaction (7): 

Substituting the value of 8 from (40) into (34) we can find the desired function j l( j2) which corresponds to realization 
of the condition of c,(O) = 0; in a parametric form, it is 

where functions P, S, G, and r depend on J and are determined by relations (35) and (37) to (39). 

4. DISCUSSION OF THE RESULTS 

As a result of the above analysis, condition (41) could be found which states how the limiting-current mode can 
be realized which comes about by slow transport of anions A to the electrode, in the situation where the parallel 
reduction of cations Al"+ and anions ~ ~ ~ 3 - i ~  followed by the recombination reaction (7) occurring within the diffusion 
layer. The conditions required for  this reaction mode are nonnegative concentrations of all components within the 
diffusion layer and validity of the inequality of 0 < 8 < 1. 

It is readily seen that for such a scheme of the full process, no other possibilities for  attainment of the limiting- 
current mode exist, i.e., the concentrations cl(0), c4(0), and c,(O) are always positive. 

We point out that the condition of 8 < 1 does not impose any limitations as to the possibilities of a stationary 
process. The position of the reaction zone a t  x = 8 generally depends both on the partial currents and on the relative 
bulk solution concentration of cations ~ ~ ~ 2 + .  The  value of 0 decreases when this concentration increases, and when a 
value of 8 = 0 is reached the overall process will no longer be described by the scheme of (5) to (7). The  condition of 
0 = 0 coincides with that of c2(0) = 0, i.e., with the condition under which a limiting current arises on account of slow 
supply of cations A2'2+ in the case where there is no homogeneous recombination (7) and the two parallel reduction 
reactions of cations Alil+ (5) and anions ~ ~ ~ 3 -  occur which involve cations Azi2-: 

Transport of ions by diffusion and migration in a system described by reactions (5) and (42) was analyzed in 
detail in [5], where conditions were estimated, in particular, under which limiting currents with respect to components 
c , ,  c2, and c3 will be realized (curves 1, 2, and 3 in Figs. 2a and 2b, respectively). The  correlation obtained in [5] 
between jl and j2 for the condition of c,(O) = 0 coincides with the function j l ( jz)  which follows from the condition of 

= 0 mentioned above. 
Thus, by combining the results of the present study with the results obtained in [5] in the instance of copper 

reduction in acidified nitrate solutions ( i l  = 2, i2 = ?, = i4 = = 1) one can find the regions of values of j1 and j ,  
where it is possible for reaction (1) to occur in parallel with reactions (2) and (3) (region III) or with reaction ( 4 )  
(regions I and II). Figures 2a and 2b show possible versions of the relative location of curve j l( j2) corresponding to the 
condition of ~ ~ ( 0 )  = 0 as described by relation (41) when the reactions follow the scheme of (1) to (3) (curve 4),  as well 
as to the same condition of c3(O) = 0 in the case where the reactions follow the scheme of (1 )  and (4) (curve 3,  which 
has a break). Moreover, for the latter scheme curves j l( j2) are reported which correspond to other possibilities for the 
advent of limiting currents: ~ ~ ( 0 1  = 0 (curve 2) or ~ ~ ( 0 )  = 0 (curve 1). 



We notice that the process investigated in the present work, which comprises a homogeneous recombination 
reaction, can be realized in region I I I  which is to the left of the curve 4 described by relation (41) and to the right of 
curve 2 corresponding to the condition of θ = 0. This region supplements the regions I  and I I  in Fig. 2a where the 
processes can follow the scheme of ( I )  and (4), and it may join up with region I  (Fig. 2b) a t  sufficiently small values of 
the parameter k when curves 2 and 3 intersect. 

Thus, the complete picture for  metal deposition and simultaneous anion reduction involving hydrogen ions looks 
as follows. The fact that said electrode processes occur in parallel in regions I  and II  gives rise to their mutual 
dependence. A stationary mode which corresponds to region I1 cannot be attained when the currents of both reactions 
increase monotonically. Region I I I  which corresponds to the additional homogeneous process occurring in the diffusion 
layer can either exist in isolation o r  have a common boundary with region I, and a change in reaction mechanism occurs 
when this boundary is crossed. 
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