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The paper theoretically examines parallel electrode processes occurring under conditions when the product 
of one of them is involved in a homogeneous reaction with a reactant of the other. As a result the limiting 
current of the second reaction depends on the current of the first, and an effect is seen which was called 
a "latent limiting current" by Kemula and Grabowski. The analytical and numerical calculations 
performed cover a wide range of parameters of the problem, and include the results of Kemula and 
Grabowski as a particular case for the limit of an infinitely high rate constant of the homogeneous 
reaction. 

The phenomenon of latent limiting currents which is very common in voltammetry arises from the special 
features exhibited by parallel electrochemical reactions when the product of one of them irreversibly interacts with a 
reactant of the other reaction [1-3]. As a result of this interaction, the diffusional flux of the reactant in the second 
reaction depends on the rate of the first reaction, ie, the processes no longer are independent. 

Suppose, for  instance, that two substances A and B are present in the solution which are reduced at the electrode. 
We shall assume, to be specific, that B is reduced at more negative potentials: 

In the terminology of [1], a latent limiting current of the first kind is observed for substance B when the reaction 

occurs in the solution. This current is defined as the difference between the limiting currents observed in the absence 
(iB) and presence (iB') of substance A: 

But a latent limiting current of the second kind, Ai = iA - iA', is observed when the reaction 

occurs in the solution. 
The theoretical analysis of latent limiting currents performed in [1, 2] was concerned with the case where 

reactions (3) or (5) occur infinitely fast as compared to the rate of diffusional transport of the reactants and reaction 
products. In the present work a theory of latent diffusion currents is developed which does not employ the above 
assumption. 
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We restrict the discussion to latent limiting currents of the first kind (the problem of latent limiting currents of 
the second kind can be solved analogously), and shall in addition assume, for  the sake of simplicity, that p = q = 1. 
Assuming that the processes to be discussed occur under conditions of excess base electrolyte when migration effects 
are unimportant* we can write the equations describing the concentration distributions of substance B and of the product 
A* of reaction (1) in the diffusion layer as 

Here DA* and DB are the diffusion coefficients of the corresponding substances, K is the rate constant of reaction (3), 
and E is the coordinate perpendicular to the electrode surface. 

One can assume for  the boundary conditions that in the bulk solution the concentration of B: 

and zero concentration of substance A*: 

are given. Here δ is the diffusion-layer thickness, which is regarded as approximately the same for  substances A* and 
B. The condition of cB(0) = 0 is fulfilled when the limiting current of substance B is attained. Moreover, at  the electrode 
the value of jA* = -jA is given, where jA is the flux of substance A, ie, 

We change to dimensionless variables: 

t = k  '6. , J=Kb2c . , /U , . ;  z = ~ . , b / U , c , ~ .  

Then the system of Eqs. (6), (7)  and the boundary conditions for  them can be written as 

It will be our aim to f ind the relation between Y(O) = dY/dt I ,=,, which is the dimensionless limiting current of 
substance B,  and K ,  which is the dimensionless limiting current of substance A, for different values of the parameter 8. 

System (12) to (16) has no analytic solution in the general case. Below we shall present results obtained when 
investigating a number of limiting cases for  which one can obtain approximate solutions of the problem (see Table 1), 
and also the results of a numerical calculation obtained by computer. 

*The interaction of two kinetically unrelated electrode processes on account of migrational ion transport leads to the 
effect of migration-current exaltation; a theory of this effect was presented in [4-7]. 



TABLE 1. Approximate Analytic Relations for the Flux of Substance B, 
Y(O), as a Function of n 

Parameter K 

Note. An arrow shows that the corresponding relation can be obtained as - 
a particular limiting case of a more general relation. 

Parameter @ 

-1 I w1 

- 1 

B l  

1. The case of low reaction rates ( B  * 1). We shall assume that flux n is sufficiently large (k >> 1) so that 
n  ~1. Here function X has a characteristic scale of X ~ n while function Y ~1. Hence one can seek the solution of 
the problem in the form of an expansion in terms of parameter l/n where the first terms are X = nXo + XI and Y = Y1 
and Xo, XI, Yl are functions having a scale of the order of unity. 

Using boundary conditions (14) and (15) one can obtain a linear relation between X and Y from (12), (13): 

I 

I - 
(21) numerical computer solutions x 6 1 (29), (32) 

t x >, 1 (36) 

(20) - (24) xa > p > 1 
(36) x e B 
(24) x2 4 P 

Substituting X and Y written in terms of X,, XI, Y1 and considering terms of the order of n we obtain Xo = 1 - t. 
Using (20) to (22) we can reduce Eq. (7) to the form of 

A linear combination of Airy functions can be used as the solution of this equation: 

where q = Sd,9n, while S1 and S2 are constants. After determining S1 and S2 from boundary conditions (15), (16) and 
differentiating (19) we obtain the desired expression for the limiting current of substance B: 

q Bi ( q )  Ai' ( q )  - Ai (q) Bi' (q) U ( O ) =  -- 
Ai (0) ~i ( q )  - ~i (q) 13 

In the case of sufficiently small β  when   q << 1 one can employ the leading terms of asymptotic expansions of the 
Airy functions [8]. As a result, (20) can be reduced to 

Relation (21) can also be obtained directly from the original system (12) to (15) by writing the solution as an expansion 
in terms of the small parameter B: X = Xo + BXl and Y = Yo + BYl where Xo, XI, Yo, Y1 are functions of the order of 
unity, and by assuming that Bn << 1. The behavior of X(t) and x(t) defined by (19) and (17) is shown in Fig. 1. Thus, 
expression (20) is applicable at any n and @ << 1. 

2. The case of large fluxes of substance A* ( r c  >> 1). In the case of low reaction rates @ << 1 and @n -~1 
functions X(t) and Y(t) vary smoothly throughout the range of 0 5 t I 1, but when B 2 1 and @n >> 1 function Y(t) 
varies very abruptly when t N 1, and throughout the remaining interval it varies smoothly and assumes values close to 
zero. In other words, at the boundary t = 1 of the diffusion layer a boundary layer is formed. 



Fig. 1 Fig.2 

Fig. 1. Functions X(t), Y(t), and pX(t)Y(t) for X(0) = 1 and p = 10. 

Fig. 2. Functions X(t), Y(t), and pX(t)Y(t) for X(0) = 8 and p = 10. 

The relation between X and Y (17) can be written in the form of 

where t* = 1 - l/n, since in the case being discussed one has Y ( O )  = e *< 1. Outside the narrow region close to t = 1 
where 1 - t >> l /n  one can neglect the first term in (22). Then (13) changes to the equation 

The linear combination of Airy functions 

where q = 3fi serves as the solution of this equation. 
After determining coefficients S1 and S, from boundary conditions (15), taking into account that 

(1 - t*)q = =&? a 1 and qt* w3* >> 1, and using the leading terms of asymptotic expansions of the Airy functions 
at high and low values of the argument [8] we obtain an expression for the limiting flux of substance B: 

We point out that relation (24) is the particular case of (20) when q >> 1. In deriving (24) we only employed the 
condition of k2 >> /3 > 1, hence (24) is fulfilled also for n >> 1, p B 1, k2 >>  .   One can conclude, therefore, that relation 
(20) can be used, not only under conditions where p a 1 (and any n) but also under conditions where k >> 1 and the 
values of p are not low although they satisfy the condition of ,!I << k2. 

The behavior of functions X(t) and Y(t) is shown in Fig. 2 for parameter values n >> 1 and /3 - 1. 
3. The case of small fluxes of substance A' (u e 1). For n *< 1 and values of /3 sufficiently low so that /3n << 1 

the flux of substance B is given by relation (21). Below we shall discuss the cases of /3 - 1 and /3 >> 1. Since the 
characteristic scale of change of function X(t) - n << I we shall seek X and Y in the form of expansions in terms of the 
parameter n where the first terms are of the form of 

and XI, Yo, Y l  are functions with a scale of change of the order of unity. Substituting (25) into (13) and allowing for 
the boundary conditions we obtain Yo = t. Then Eq. (12) becomes d2x1/dt2 = BtX1. The linear combination of Airy 
functions 



serves as its solution; it satisfies (15). Using now the linear relation (17) between X and Y we can find the flux of B: 

Ai (0) Bi ( v ' ~  -~3 Ai ( i ~ )  
, . 

Ai' (0) ~i (;B) + Y F A ~  ($) 

Using the leading terms of asymptotic expansions of the Airy functions we can see that for  p <c 1 (27) changes into (21). 
At high reaction rates /3 >> 1 the solution of the problem implies that a boundary layer exists near t = 0. Then 

X(1) <c 1 and the solution of the problem can be found via a scheme analogous to that described above for the 
boundary-layer case involving t = 1. The result obtained coincides with the expression following for the flux of 
substance B from (27) when ,9 >> 1: 

Thus, relation (27) is valid for  n <c 1 and any values of ,9. 
4. High reaction rates (B >s 1). When discussing this case we shall distinguish the two situations of n < 1 and 

n > 1. Suppose that n < 1. At  high reaction rates (,9 >> I )  practically all of substance A* can react with substance B near 
the electrode. At  the electrode surface a boundary layer is formed where Y(t) has a sharp maximum since Y(0) = 0, 
while beyond the maximum Y(t) drops off exponentially since all of substance A* has reacted near the electrode. It is 
precisely this limiting case which corresponds to the discussion of latent limiting currents in [ l ]  where it was assumed 
that in the limit of /3 = ce the flux of substance B at the electrode is given by 1 - n. 

We shall assume that at ,9 >7 1 the flux of substance B to the electrode differs from 1 - n by the small quantity 
E: 

Then the relation between X and Y is given (with (15)) by the expression 

Y = X + ( I + e )  ( t- t * ) ,  (30) 

where t. = &/(I + ε)  u ε. In the limit of ,9 -+ oo one has E = 0, Y(t) = t, and X(t) = 0. 
We shall seek the solution in the form of 

S=S-. 17=1'- for O<tGt., 

S=S,. Y = Y +  for t . < t < l .  

At t >> t. one can neglect X in (30). and obtain an equation for X+: 

which has a solution satisfying (15) that is given by the expression 

We point out that for  t u tt the second term in the expression for X+ is exponentially small as compared to the first, and 
can be neglected. The  function Y+ that corresponds to X +  can be found from (30), and is given by 



In the region of t 5 t* one has Y - t but X ~ E m t*. Hence when neglecting Y in (3) relative to the second term we 
arrive at the following equation for Y-: 

The linear combination of Airy functions 

serves as the solution of this equation. The relation between SS and S, can be found with the aid of boundary conditions 
(15) and the matching conditions for the solutions. The matching condition for Y, and Y+ is of the form of 

After determining the coefficients S1, S3, and S4 from (29) and (31) we obtain the equation for E: 

For values of n not close to unity, the value of E which is determined by Eq. (32) is of the order of B-llS. In the 
particular qase of n << 1 one can obtain relation (28) from (32) and (29). One can readily see that for 1 - n << 1 one has 
'fi>> 1 Y(0) = 1 - n << 1. Thus, (29) yields the correct solution for small fluxes of substance A* when n << 1, and at 
all values of n < 1 when f l  >> 1. 

We shall now turn to the situation where ,9 >> 1 and n > 1. In contrast to the case of n x= 1 considered above, the 
boundary layer here does not arise at the right-hand boundary t = 1 of the region but at some intermediate point to 
within the region 0 < t < 1. 

We shall seek the solution of the problem in the form of the first terms of an expansion in terms of the small 
parameter p-l: 

where X,, XI, Yo, Y1 ~ 1. In the zeroth approximation we have XoYo = 0 everywhere except in the vicinity of point 
to = 1 - l/n, hence the equation and the boundary conditions are satisfied by the function 

Xo=x(to- t ) ;  Yo=O for tGto, 

Xo=O; Y,=x(t-to) for t>to. (34) 

The reaction zone where substance B reacts with substance A* is centered around t = to. Only a small part of 
substance B reaches the electrode: Y(0) = e <c 1. To find E we shall seek the solution in the form that follows from (33) 
and (34): 

Y=Y-;  X=X-=Y-+x(to-t) for K t , ;  

X=X+; Y=Y+=X++ x ( t- t o)  for t 2 t 0 ,  (35) 

where Y-, X+ - B-' << 1, The scheme to be used for finding the solution is entirely analogous to that described above. 
Sufficiently far from the point t = to one can neglect Y_ or X+ in (30), obtain the Airy equation in each of the two 
regions, and find the coefficients in the linear combination of Airy functions from the boundary conditions and the 
conditions for matching of functions Y, and Y+ as well as of the derivatives of these functions for t = to. As a result we 
obtain 

χ 
~ ( O ) = E  - ~ i '  ( ~ ~ ~ ( 1 -  11%) ) . Ai' ( 0 )  
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Fig. 3. Functions X(t), Y(t), and pX(t)Y(t) for X(0) = 1.5 and /3 = 1000. 

Fig. 4. ΣI as a function of n for values of parameter p of: 1) 0, 2) 1, 3) 10, 4) 100, 5) 1000, and 6 )  oo. 

Fig. 5. Latent limiting currents as functions of n for values of parameter /3 of: 1) 0, 2) 1, 3) 10, 4) 100, 
5) 1000, and 6) oo. 

It was assumed when obtaining (36) that (K - 1)p >> 1 and K + p, ie, that point to is located not too close to the ends of 
the interval of to E and 1 - t, >> ε.  But if it is assumed that 1 - to e E one can see that Y(0) is given by relation (24). 
In the case of to << 1 one has Y(0) sj 0. 

The concentration profiles X(t) and Y(t) for the case of B >> 1 and n - 1 are shown in Fig. 3. 
5. Numerical solution of the problem. The system (12) to (15) was solved numerically in order to obtain the full 

picture of behavior of the limiting flux of substance B at arbitrary values of parameters /3 and n. The solution scheme 
was set up as follows. It follows from relation (17) for t = 0 that 

Substituting (37) into (17) we have 

Y=X+X(O)  (t-1) +t. (38) 

Using (38), we can transform (12) to read 

Equation (39) with boundary conditions X(l) = 0 and X(0) = 7 was solved numerically by the method of linearization 
and sweep [9, 10]. From the solution we found the values of X(0) = -+ and Y(0), ie, the limiting flux of substance B, 
which were functions of 7,  hen-ce we found the desired function Y(0) (n, p) in parametric form. The calculated 
functions of total flux CI = n + Y(0) of substances A and B to the electrode are presented in Fig. 4 for a number of 
values of the parameter B. The family of curves ΣI shows the degree of influence exerted by the reaction rates /3 on the 
resulting reaction kinetics. The limit of B = oo discussed in [ 1  -3] corresponds to ΣI = 1 when n < 1 and to n when n > 1. 
The latent limiting current of substance B which is the difference between the currents at /3 = 0 and /3 f 0 is given by 
the relation A1 = 1 - Y(0) and shown as a function of n in Fig. 5. 

6. Conclusion. The above calculations of the latent limiting currents as functions of parameter n which were 
performed for a wide range of values of B make it possible to estimate homogeneous rate constant K from the 
corresponding experimental functions. To find this constant one must compare the experimental plot of overall current 
against solution composition with the calculated curves, and select the value of B which corresponds to the theoretical 
curve that most accurately describes the experimental data. 

The authors thank L. G. Feoktistov for useful discussion of the work. 
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